Article : [PAP360]
Titre : T. LEQUEU, Les tests en fiabilité, rapport interne LMP, novembre 2001.
Cité dans : [DATA033] Liste des publications de Thierry LEQUEU et activités de recherche, octobre 2022. Cité dans :[THESE090]Auteur : Thierry LEQUEU
Sommaire :
Vers : 1.1 - Les différents types de contraintes
Vers : 1.2 - Les tests standards
Vers : 1.3 - HTS ("High Temperature Storage")
Vers : 1.4 - THB ("Temperature Humidity Bias" )
Vers : 1.5 - HTRB ("High Temperature Reverse Bias")
Vers : 1.6 - T/C ("Thermal Cycles")
Vers : 1.7 - T/S ("Thermal Shocks")
Vers : 1.8 - Tests d'intégrité du boîtier ("Package Tests")
Vers : 1.9 - Les tests fonctionnels
Vers : 1.10 - Fatigue thermique ("thermal fatigue") ou test cyclique de puissance
Vers : 1.11 - Fatigue thermique - Courants accidentels ("repetitive surge")
Vers : 1.12 - Fatigue thermique - Chocs thermiques par di/dt ("hammering")
Vers : 2.1 - Loi d'Arrhenius
Vers : 2.2 - Loi d'Eyring
Vers : 2.3 - Loi de puissance inverse
Vers : 2.4 - Loi température humidité
Vers : 2.5 - Loi température - non thermique
Vers : 3.1 - La loi d'Aloisi
Vers : 3.2 - La loi d'Arrhenius
Vers : 3.3 - La loi de Coffin-Manson
Vers : 3.4 - Loi de Sarihan
Vers : 3.5 - Loi de Paris
Vers : 3.6 - Loi de Norris-Landzberg 1969
1.1 - Les différents types de contraintes |
1.2 - Les tests standards |
[1] : [LIVRE063] W. KUO, W.-T. K. CHIEN, T. KIM, Reliability, yield, and stress burn in: a unified approach for microelectronics systems manufacturing and software development, Kluwer Academic Publishers, january 1998. [2] : [PAP424] F. JAUFFRET, TO220 SCR's and TRIACs reliability test conditions, Note d'application STMicroelectronics, janvier 1996.Lien : JEDECSTD.htm - le 22 novembre 2001.
1.3 - HTS ("High Temperature Storage") |
[1] : [PAP425] A.H. FISCHER, A.E. ZITZELSBERGER, The quantitative assessment of stress-induced voiding in process qualification, IRPS'2001, April 30 - Mai 3, 2001, Orlando, Floride. [2] : [DIV445] Department of Defense - United States of America, MIL-STD-750D - Test Method Standard - Semiconductor devices, 4th edition, 28 February 1995.Lien : thermeng/anatech2.html - MIL STD 750C
1.4 - THB ("Temperature Humidity Bias" ) |
[1] : [PAP310] R. BLISH, N. DURRANT, Semiconductor Device Reliability Failure Models, International SEMATECH, Technology Transfer # 00053955A-XFR, May 31, 2000, 34 pages. [2] : [PAP426] G.G. Shirley, THB Reliability Models and Life Prediction for Intermittently-Powered Non-Hermetic Components, 94072. [3] : [PAP427] C.G. Shirley, C.E.C. Hong, Optimal Acceleration of Cyclic THB Tests for Plastic Packaged Devices, 91012. [4] : [PAP428] K. Van Doorselaer, A. Hente, A. Saboui, J.-P. Moscicki, Thin Type Packaging: An Effective Way to Improve the Popcorn Resistance of Plastic-Packaged IC's, 93244. [5] : [PAP429] R.L. Shook, T.R. Conrad, Accelerated Life Performance Of Moisture Damaged Plastic Surface Mount Devices, 93227.
1.5 - HTRB ("High Temperature Reverse Bias") |
[1] : [PAP430] Y. Rey-Tauriac, M. Taurin, O. Bonnaud, High reliability power VDMOS Transistors in Bipolar/CMOS/DMOS technology, ESREF'2001. [2] : [PAP431] Y. Rey-Tauriac, M. Taurin, O. Bonnaud, Wafer Level Accelerated test for ionic contamination control on VDMOS transistors in Bipolar/CMOS/DMOS, ESREF'2001.
1.6 - T/C ("Thermal Cycles") |
[1] : [DATA035] Recherche sur les mots clés thermal + fatigue + semiconductor et reliability + thermal + cycle, mars 2004.
1.7 - T/S ("Thermal Shocks") |
[1] : [PAP440] F. OSTERSTOCK, B. LEGENDRE, A Method to Compare the Thermal Shock Resistances and the Severity of Quenching Conditions of Brittle Solids, J. Phys. III France, Vol. 7, March 1997, pp. 561-574 [2] : [SHEET431] D.P.H. HASSELMAN, Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics, J. Amer. Ceram. Soc., vol. 52, no. 11, pp. 600-607, 1969. [3] : [SHEET125] A.E. SEGALL, J.R. HELLMANN, R.E. TRESSLER, Thermal Shock Behaviour - Testing and Modelling, GRI, December 1992, 232 pages. [4] : [PAP310] R. BLISH, N. DURRANT, Semiconductor Device Reliability Failure Models, International SEMATECH, Technology Transfer # 00053955A-XFR, May 31, 2000, 34 pages. [5] : [PAP432] J.V. MANCA, W. WONDRAK, W. SCHAPER, K. CROES, J. D’HAEN, W. DE CEUNINCK, B. DIEVAL, H.L. HARTNAGEL, M. D’OLIESLAEGER, L. DE SCHEPPER, Reliability aspects of high temperature power MOSFETs, ESREF'2000. [6] : [DATA213] S. FORSTER, Mécanisme de fracture dans les matériaux fragiles et théorie du choc thermique, rapport interne, 8 novembre 2000, 13 pages. [7] : [DATA062] Recherche sur les auteurs COFFIN et MANSON, octobre 2001. [8] : [PAP433] S. Ishihara, T. Goshima, A.J. McEvily, T. Ishizaki, On Fatigue Damage and Small Crack Growth Behavior of Silicon Nitride Under Cyclic Thermal Shock Loading [9] : [TRIAC044] G.D. ZOTTO, Reliability characteristics of 25A triac, 1982.
[10] : [SHEET459] S. FORSTER, T. LEQUEU, R. JERISIAN, A. HOFFMANN, 3-D analysis of the breakdown localized defects of ACSTM through a triac study, Microelectronics Reliability, October 2000, Vol. 40, pp. 1695-1700. [11] : [PAP434] P. Alpern, K.C. Lee, R. Dudek, R. Tilgner, A simple model for the mode I popcorn effect for IC packages, ESREF'2000. [12] : [TRIAC079] AN533, Ph. RABIER, SCRs, TRIACs and AC switches: Thermal Management Precautions for Handling and Mounting, octobre 2000, 17 pages. [13] : [SHEET430] D.P.H. HASSELMAN, Thermal Stress Resistance Parameters for Brittle Refractory Ceramics: a compendium, Bull. Amer. Ceram. Soc., Vol. 49, No. 12, pp. 1033-1037, 1970. [14] : [SHEET160] W. POGROSZELSKI, R. SCHMIDT, Thermal fatigue of electronic components, 1989. [15] : [SHEET196] R.G. RODRIGUES, D.E. PICCONE, W.H. TOBIN, L.W. WILLINGER, J.A. BARROW, T.A. HANSEN, J. ZHAO, L. CAO, Operation Of Power Semiconductors At Their Thermal Limit, 1998 IEEE IASociety Annual Meeting, October 12-15, 1998, 12 pages. [16] : [PAP435] J.M. Duffalo, D.L. Erhart, S.C. Schmok, Novel Failure Modes with Overmolded Printed Circuit Board-based Surface Mount Packages, 93250. [17] : [PAP436] J. Lau, G. Harkins, D. Rice, J. Kral, Thermal Fatigue Reliability of SMT Packages and Interconnections, 87250. [18] : [PAP437] B. BOURSAT, F. BREIT, M. MERMET-GUYENNET, Improved power chip electrical connection, EPE'2001. [19] : [PAP438] X. Meyza, D. Goeurit, J. Liebault, D. Juve, D. Tréheux, F. Thévenot, Thermal shock on an alumina material: influence on mechanical and dielectrical properties, 2001.
[20] : [SHEET465] S. RAMMINGER, N. SELIGER, G. WACHUTKA, Reliability Model for Al Wire Bonds subjected to Heel Crack Failures, ESREF'2000, pp. 1521-1526. [21] : [SHEET291] Y. TAKAHASHI, K. YOSHIKAWA, M. SOUTOME, T. FUJII, M. ICHIJYOU, M.Y. SEKI, 2.5 kV-1000 A power pack IGBT (high power flat-packaged RC-IGBT) [22] : [SHEET144] C. BASARAN, R. CHANDAROY, Finite element simulation of the temperature cycling tests, 1997. [23] : [PAP439] R. C. Blish, II Temperature Cycling and Thermal Shock Failure Rate Modeling, IEEE-IRPS Proceedings, p 110 (1997).
1.8 - Tests d'intégrité du boîtier ("Package Tests") |
[1] : [DATA227] ESREF'2001, 12th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, Arcachon, France , 1-5 octobre 2001. [2] : [DIV214] IRPS'2001, 2001 IEEE International Reliability Physics Symposium, 30 avril - 3 mai 2001, Orlando, Floride. [3] : [CONF061] IRW, Integrated Reliability Workshop, IRPS, mai 2004. [4] : [DATA126] ESREF'2000, 11th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, Dresden, Germany, 2-6 octobre 2000. [5] : [CONF040] SEMI-THERM, IEEE Semiconductor Thermal and Temperature Measurement Symposium.
[6] : [LIVRE137] T.I. BAJENESCU, M.I. BAZU, Reliability of electronics components - A practical guide to electronic systems manufacturing, Springer, 1999, 509 pages. [7] : [LIVRE234] R.B. ABERNETHY, The New Weibull Handbook, 1996, 536 Oyster Road, North Palm Beach, FL 33408-4328. [8] : [REVUE190] Elsevier Science, Microelectronics Reliability, Vol. 40, Issue 8-10, pp. 1243-1770, august-october 2000. [9] : [REVUE257] Elsevier Science, Microelectronics Reliability, Volume 41, Issue 11, Pages 1737-1913, November 2001. [10] : [PAP462] D. Wojciechowski, Moses Chan, Fabrizio Martone, Lead-free plastic area array BGAs and polymer stud grid arraysTM package reliability, Microelectronics Reliability, Volume 41, Issue 11, November 2001, pp. 1829-1839. [11] : [REVUE253] Elsevier Science, Microelectronics Reliability, Volume 38, Issues 6-8, Pages 851-1366, 8 June 1998. [12] : [PAP463] J. B. Nysaether, A. Larsenb, B. Liverodb, P. Ohlckersa, Structures for piezoresistive measurement of package induced stress in transfer molded silicon pressure sensors, Microelectronics and Reliability, Volume 38, Issues 6-8, 8 June 1998, pp. 1271-1276. [13] : [REVUE236] Elsevier Science, Microelectronics Reliability, Volume 39, Issue 4, Pages 441-549, April 1999. [14] : [PAP464] M. AMAGAI, Chip Scale Package (CSP) solder joint reliability and modeling, Microelectronics and Reliability, Volume 39, Issue 4, April 1999, pp. 463-477.
[15] : [SHEET169] I.L. SOMOS, D.E. PICCONE, L.J. WILLINGER, W.H. TOBIN, Power semiconductors empirical diagrams expressing life as a function of temperature excursion, IEEE Transactions on Magnetics, jan. 1993, vol. 29, issue 1, part 2, pp. 517-522. [16] : [PAP428] K. Van Doorselaer, A. Hente, A. Saboui, J.-P. Moscicki, Thin Type Packaging: An Effective Way to Improve the Popcorn Resistance of Plastic-Packaged IC's, 93244. [17] : [SHEET144] C. BASARAN, R. CHANDAROY, Finite element simulation of the temperature cycling tests, 1997. [18] : [PAP310] R. BLISH, N. DURRANT, Semiconductor Device Reliability Failure Models, International SEMATECH, Technology Transfer # 00053955A-XFR, May 31, 2000, 34 pages. [19] : [PAP435] J.M. Duffalo, D.L. Erhart, S.C. Schmok, Novel Failure Modes with Overmolded Printed Circuit Board-based Surface Mount Packages, 93250. [20] : [PAP430] Y. Rey-Tauriac, M. Taurin, O. Bonnaud, High reliability power VDMOS Transistors in Bipolar/CMOS/DMOS technology, ESREF'2001. [21] : [PAP436] J. Lau, G. Harkins, D. Rice, J. Kral, Thermal Fatigue Reliability of SMT Packages and Interconnections, 87250. [22] : [PAP429] R.L. Shook, T.R. Conrad, Accelerated Life Performance Of Moisture Damaged Plastic Surface Mount Devices, 93227. [23] : [PAP256] W.W. LEE, L.T. NGUYEN, G.S. SELVADURAY, Solder joint fatigue models: review and applicability to chip scale packages, Microelectronics Reliability, Vol. 40, No. 2, 2000, pp. 231-244. [24] : [PAP432] J.V. MANCA, W. WONDRAK, W. SCHAPER, K. CROES, J. D’HAEN, W. DE CEUNINCK, B. DIEVAL, H.L. HARTNAGEL, M. D’OLIESLAEGER, L. DE SCHEPPER, Reliability aspects of high temperature power MOSFETs, ESREF'2000. [25] : [PAP434] P. Alpern, K.C. Lee, R. Dudek, R. Tilgner, A simple model for the mode I popcorn effect for IC packages, ESREF'2000. [26] : [PAP426] G.G. Shirley, THB Reliability Models and Life Prediction for Intermittently-Powered Non-Hermetic Components, 94072. [27] : [PAP255] X. MA, Y. QIAN, X. ZHANG, The Concept of Relative Damage Stress and its Application to Electronic Packaging Solder Joint Reliability, IRPS'2001, pp. 128-131.Lien : DIV158.HTM - 05358 : ic/package design integration, 1998. proceedings. 1998 IEEE symposium on
[1] : [DIV280] AN526, C. COGNETTI, Plastic Packages for Power Discretes and ICs, SGS-THOMSON Application Note, 07/94, 15 pages.
1.9 - Les tests fonctionnels |
[1] : [SHEET169] I.L. SOMOS, D.E. PICCONE, L.J. WILLINGER, W.H. TOBIN, Power semiconductors empirical diagrams expressing life as a function of temperature excursion, IEEE Transactions on Magnetics, jan. 1993, vol. 29, issue 1, part 2, pp. 517-522.
1.10 - Fatigue thermique ("thermal fatigue") ou test cyclique de puissance |
[1] : [DIV334] Recherche sur les mots clés power cycling of power device, mai 2002.
[2] : [LIVRE137] T.I. BAJENESCU, M.I. BAZU, Reliability of electronics components - A practical guide to electronic systems manufacturing, Springer, 1999, 509 pages. [3] : [LIVRE193] C.A. NEUGEBAUER, A.F. YERMAN, R.O. CARLSON, J.F. BURGESS, The Packaging of Power Semiconductor Devices, Electrocomponent Science Monographs, Gordon and Breach Science Publishers, vol. 7, 1986. [4] : [LIVRE119] M. OHRING, Engineering Materials Science, A Publication of Academic Press U.S.A., November 1995. [5] : [CONF066] THERMES, Thermal Challenges in Next Generation Electronic Systems, septembre 2001. [6] : [CONF058] ASTM, American Society For Testing and Materials. [7] : [REVUE218] Elsevier Science, Microelectronics Reliability, Volume 41, Issue 4, Pages 481-624, April 2001. [8] : [REVUE190] Elsevier Science, Microelectronics Reliability, Vol. 40, Issue 8-10, pp. 1243-1770, august-october 2000. [9] : [REVUE167] Elsevier Science, Microelectronics Reliability, Vol. 40, Issue 2, pp. 191-364, 28 February 2000. [10] : [REVUE253] Elsevier Science, Microelectronics Reliability, Volume 38, Issues 6-8, Pages 851-1366, 8 June 1998. [11] : [REVUE173] IEEE ELECTRON DEVICES SOCIETY, IEEE TRANSACTIONS ON ELECTRON DEVICES, July 2000, Volume 47, Number 07. [12] : [REVUE166] Elsevier Science, Microelectronics Reliability, Volume 40, Issue 3, Pages 365-546, 17 March 2000. [13] : [CONF043] ISTFA, International Symposium for Testing and Failure Analysis et IEE proc. IGBT propulsion drives, London, mai 2002. [14] : [CONF045] PCI, Power Conversion International, Publ by Intertec Communications, Ventura, CA, USA.
[15] : [DATA035] Recherche sur les mots clés thermal + fatigue + semiconductor et reliability + thermal + cycle, mars 2004. [16] : [DATA152] Recherche sur l'auteur M. PECHT, octobre 2002. [17] : [DATA037] Proceedings of the 10th IEEE Semiconductor Thermal Measurement and Management Symposium. [18] : [DATA063] Recherche sur l'auteur H.D. SOLOMON. [19] : [DATA062] Recherche sur les auteurs COFFIN et MANSON, octobre 2001. [20] : [DATA049] Recherche sur l'auteur Dante E. PICCONE, mars 2000. [21] : [DATA042] Recherche sur l'auteur Istvan SOMOS, mars 2000. [22] : [99DIV110] Recherche sur l'auteur Philippe LETURCQ [23] : [DIV194] S. FORSTER, Fiabilité des TRIACs - Rapport interne LMP, version du 11 septembre 2000. [24] : [DATA146] LTN, Laboratoire des Technologies Nouvelles, INRETS, Arcueil, France. [25] : [DATA227] ESREF'2001, 12th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, Arcachon, France , 1-5 octobre 2001. [26] : [DATA198] Recherche sur l'auteur D.P.H. HASSELMAN. [27] : [DIV028] ElectrIMACS'96, International Association for Mathematics and Computer in Simulation, Saint NAZAIRE. [28] : [DIV214] IRPS'2001, 2001 IEEE International Reliability Physics Symposium, 30 avril - 3 mai 2001, Orlando, Floride. [29] : [DIV275] GREEN, Groupe de Recherche en Electrotechnique et Electronique de Nancy, Nancy, novembre 2001 [30] : [DIV134] EPE'95, European Conference on POWER ELECTRONICS AND APPLICATIONS, Seville, Espagne, september 1995. [31] : [DIV063] EPE'97, European Conference on POWER ELECTRONICS AND APPLICATIONS, Trondheim, Norvège, septembre 1997.
Articles |
[1] : [PAP254] S. WEN, L. M. KEER, A Fatigue Theory for Solders, IRPS'2001, pp. 120-127. [2] : [PAP255] X. MA, Y. QIAN, X. ZHANG, The Concept of Relative Damage Stress and its Application to Electronic Packaging Solder Joint Reliability, IRPS'2001, pp. 128-131. [3] : [PAP256] W.W. LEE, L.T. NGUYEN, G.S. SELVADURAY, Solder joint fatigue models: review and applicability to chip scale packages, Microelectronics Reliability, Vol. 40, No. 2, 2000, pp. 231-244. [4] : [PAP301] M.P. RODRIGUEZ, N.Y.A. SHAMMAS, Finite element simulation of thermal fatigue in multilayer structures: thermal and mechanical approach, Elsevier Science, Microelectronics Reliability, Volume 41, Issue 4, April 2001, pp. 517-523. [5] : [PAP310] R. BLISH, N. DURRANT, Semiconductor Device Reliability Failure Models, International SEMATECH, Technology Transfer # 00053955A-XFR, May 31, 2000, 34 pages. [6] : [PAP369] J.M. Bosc, Integrated power transistor size optimisation, ESREF'2001, pp. 1671-1676. [7] : [PAP370] S. FORSTER, T. LEQUEU, R. JERISIAN, Operation of power semiconductors under transient thermal conditions: thermal fatigue reliability and mechanical aspects, ESREF'2001, pp. 1677-1682. [8] : [PAP372] G. COQUERY, S. CARUBELLI, J.P. OUSTEN, R. LALLEMAND, F. LECOQ, D. LHOTELLIER, V. DE VIRY, PH. DUPUY, Power module lifetime estimation from chip temperature direct measurement in an automotive traction inverter, ESREF'2001, pp. 1695-1700 [9] : [PAP377] S.S. MANSON, Thermal stress and low-cycle fatigue, Krieger, Florida, 1981 [10] : [PAP433] S. Ishihara, T. Goshima, A.J. McEvily, T. Ishizaki, On Fatigue Damage and Small Crack Growth Behavior of Silicon Nitride Under Cyclic Thermal Shock Loading
[11] : [PAP435] J.M. Duffalo, D.L. Erhart, S.C. Schmok, Novel Failure Modes with Overmolded Printed Circuit Board-based Surface Mount Packages, 93250. [12] : [PAP436] J. Lau, G. Harkins, D. Rice, J. Kral, Thermal Fatigue Reliability of SMT Packages and Interconnections, 87250. [13] : [PAP439] R. C. Blish, II Temperature Cycling and Thermal Shock Failure Rate Modeling, IEEE-IRPS Proceedings, p 110 (1997). [14] : [PAP440] F. OSTERSTOCK, B. LEGENDRE, A Method to Compare the Thermal Shock Resistances and the Severity of Quenching Conditions of Brittle Solids, J. Phys. III France, Vol. 7, March 1997, pp. 561-574
[15] : [SHEET119] G. COQUERY, R. LALLEMAND, D. WAGNER, M. PITON, H. BERG, K. SOMMER, Reliability improvement of the soldering thermal fatigue with AlSiC technology on traction high power IGBT modules, EPE'99, paper 904, 1999. [16] : [SHEET121] G. COQUERY, R. LALLEMAND, D. WAGNER, P. GIBARD, Reliability of the 400 A IGBT modules for traction converters. Contribution on the power thermal fatigue influence on life expancy, EPE'95, vol. 1, pp. 60-65. [17] : [SHEET122] A. HAMIDI, G. COQUERY, R. LALLEMAND, Reliability of high power IGBT modules. Testing on thermal fatigue effects due to traction cycles, Proc. of EPE Conf., Trondheim, September 1997, vol. 3, pp. 3.118-3.123. [18] : [SHEET123] P. ALOISI, La fatigue thermique, Electronique de Puissance, no. 24, 1987, pp. 31-39. [19] : [SHEET125] A.E. SEGALL, J.R. HELLMANN, R.E. TRESSLER, Thermal Shock Behaviour - Testing and Modelling, GRI, December 1992, 232 pages. [20] : [SHEET127] P. ALOISI, Thermal fatigue in power semiconductor, PCI'87. [21] : [SHEET140] A. HAMIDI, G. COQUERY, R. LALLEMAND, P. VALES, J.M. DORKEL, Temperature measurements and thermal modeling of high power IGBT multichip modules for reliability investigations in traction applications, Microelectronics and Reliability, vol. 38, no. 6-8, J [22] : [SHEET141] T.E. WONG, I. SUASTEGUI, H.M. COHEN, A.H. MATSUNAGA, Experimentally validated thermal fatigue life prediction model for leadless chip carrier solder joint, 1998. [23] : [SHEET142] F.S. POPELAR, Parametric study of flip chip reliability based on solder fatigue modelling: Part II - flip chip on organic, 1998 International Symposium on Microelectronics, Nov. 1998, pp. 497-504. [24] : [SHEET143] S. OSAMU, F. KAZUMASA, K. HEIKICHI, T. TOSHIO, Simulation of the transient temperature distribution in a high-power semiconductor device cooling apparatus using heat pipes, 1997.
[25] : [SHEET144] C. BASARAN, R. CHANDAROY, Finite element simulation of the temperature cycling tests, 1997. [26] : [SHEET145] S.F. POPELAR, Parametric study of flip chip reliability based on solder fatigue modelling, 1997. [27] : [SHEET146] K.J. DITTMER, M.H. POECH, F.W. WULFF, M. KRUMM, Failure analysis of aluminum wire bonds in high power IGBT modules, Proceedings of the Spring Meeting on MRS, San Francisco, USA, April 1995, pp. 251-256. [28] : [SHEET148] A. CHEN, X. GUI, G.-B. GAO, Modelling of thermal fatigue failure in soft-soldered semiconductor devices using the internal variable method, 1990. [29] : [SHEET149] J.F. BURGESS, R.O. CARLSON, H.H. GLASCOCK, C.A. NEUGEBAUER, H.F. WEBSTER, Solder fatigue problems in power packages, IEEE Trans Compon Hybrids Manuf Technol, Vol. CHMT-7, No. 4, Dec 1984, pp. 405-410. [30] : [SHEET151] D.R. OLSEN, H.M. BERG, Properties of die bond alloys relating to thermal fatigue, 1979. [31] : [SHEET152] K.S. KANG, N.D. ZOMMER, L. DONALD, R.W. HECKEL, Thermal fatigue failure of soft-soldered contacts to silicon power transistors, 1977. [32] : [SHEET153] P. LIN, J. LEE, S. IM, Design considerations for a flip- chip joining technique, 1970. [33] : [SHEET154] M.P. RODRIGUEZ, N.Y.A. SHAMMAS, A.T. PLUMPTON, D. NEWCOMBE, D.E. CREES, Finite element modelling of thermal fatigue effects in IGBT modules, 1999. [34] : [SHEET155] S. JANUSZEWSKI, M. KOCISZEWSKA-SZCZERBIK, H. SWIATEK, G. SWIATEK, Semiconductor device failures in power converter service conditions, EPE Journal, Dec. 1998, vol. 7, no. 3-4, pp. 12-17.
[35] : [SHEET156] V. BENDA, Reliability of power semiconductor devices - Problems and trends, PEMC'96, vol.1, pp. 30-35, 2-4 Sept. 1996. [36] : [SHEET157] J. KOHALMI, Ageing of semiconductors. Check tests gained from experience with M.S.R.(MAV) rectifier locomotives, 1970. [37] : [SHEET158] W. WU, G. GAO, L. DONG, Z. WANG, M. HELD, P. JACOB, P.SCACCO, Thermal reliability of power insulated gate bipolar transistor (IGBT) modules, 1996, Proceedings of the 12th Annual IEEE SEMI THERM Symposium, pp. 136-141. [38] : [SHEET159] L.H. CHANG, W.A. ANDERSON, Stability of BaTiO3 thin films on Si, 1994. [39] : [SHEET160] W. POGROSZELSKI, R. SCHMIDT, Thermal fatigue of electronic components, 1989. [40] : [SHEET161] D. POTE, G. THOME, T. GUTHRIE, An overview of infrared thermal imaging techniques in the reliability and failure analysis of power transistors, 1987. [41] : [SHEET162] W. BRESCH, A.P. CONNOLLY, Future trends of power semiconductor modules, 1986. [42] : [SHEET163] Gao Guang-bo; Chen An; Gui Xiang, A layer damage model for calculating thermal fatigue lifetime of power devices, 1986. [43] : [SHEET164] A.J. YERMAN, J.F. BURGESS, R.O. CARLSON, C.A. NEUGEBAUER, Hot spots caused by voids and cracks in die attach, Proceedings of the 33rd Electronic Components Conference, 16-18 May 1983, pp. 578-582. [44] : [SHEET165] V.S. CANDADE, Sequence test method for reliability evaluation of semiconductor devices, 1981.
[45] : [SHEET166] A.T. ENGLISH, C.M. MELLIAR-SMITH, Reliability and failure mechanisms of electronic materials,Annual review of materials science, vol.8, 1978, pp. 459-495. [46] : [SHEET167] J.W. HATHAWAY, C.C. YU, Thermal fatigue testing of discrete components, IBM, 1977. [47] : [SHEET168] P. ALOISI, Failure diagnosis in medium power semiconductor, EPE'91, Firenze, vol. 3, pp. 117-119. [48] : [SHEET169] I.L. SOMOS, D.E. PICCONE, L.J. WILLINGER, W.H. TOBIN, Power semiconductors empirical diagrams expressing life as a function of temperature excursion, IEEE Transactions on Magnetics, jan. 1993, vol. 29, issue 1, part 2, pp. 517-522. [49] : [SHEET170] R. ABID, F. MISEREY, Temperature non contact measurements on the surface of a GTO thyristor in commutation,EPE'95, septembre 1995, pp. 2.191-2.196 [50] : [SHEET171] S. RAEL, E. CLAVEL, Y. MARECHAL, CH. SCHAEFFER, PMCM conception methodology: development of a 3D electrothermal simulation tool, EPE'95, septembre 1995, pp. 1.177- [51] : [SHEET172] Z. LISIK, R. BARCZEWSKI, J. PODGORSKI, M. KOPEK, 3-D simulation of heat transfer in power semiconductor devices, EPE'95, septembre 1995, vol. 2, pp. 2.277-2.281. [52] : [SHEET232] I.L. SOMOS, L.O. ERIKSSON, W.H. TOBIN, Establishing conditions for a meaningful di/dt test for thyristors, Proceedings of the Tenth International PCI '85 Conference, Chicago, Oct. 19855, pp. 113-121. [53] : [SHEET245] S. JANUSZEWSKI, M. KOCISZEWSKA-SZCZERBIK, H. SWIATEK, Some observation dealing with the failures of IGBT transistors in high power converters, Microelectronics and Reliability, vol. 38, no. 6-8, Jun-Aug 1998, pp. 1325-1330. [54] : [SHEET305] H.D. SOLOMON, The influence of hold time and fatigue cycle wave shape on the-low cycle fatigue of 60/40 solder, 1988.
[55] : [SHEET316] Q. YAO, J. QU, S.X. WU, Solder fatigue life in two chip scale packages, 1999. [56] : [SHEET317] S. Kitajo, S. Ohkawa, N. Senba, K. Hashimoto, N. Ebihara, Using thermal stress simulation to estimate stacked memory module reliability under thermal cycle test, 1999. [57] : [SHEET320] V. SARIHAN, Energy based methodology for damage and life prediction of solder joints under thermal cycling, Proceedings of the 43rd Electronic Components and Technology Conference, 1993, pp. 32-38. [58] : [SHEET321] R. SUNDARARAJAN, P. McCLUSKEY, S. AZARM, Semi analytic model for thermal fatigue failure of die attach in power electronic building blocks, 4th High Temperature Electronics Conference, 1998, pp.99-102. [59] : [SHEET322] B. VANDEVELDE, E. BEYNE, Thermal fatigue reliability analysis of redistributed flip chip assemblies, 1998. [60] : [SHEET326] V. SARIHAN, Energy based methodology for damage and life prediction of solder joints under thermal cycling, IEEE Components and Manufacturing Technology, vol. 17, pp. 626-631, 1994. [61] : [SHEET332] D.B. PARKER, A. DASGUPTA, M.G. PECHT, PWB solder joint life calculations under thermal and vibrational loading, 1991. [62] : [SHEET336] Y.H. PAO, W. JUNG, R. COOPER, V.A. SANKARAN, X. XU, Thermal Fatigue Modeling of Solder Interlayer in Power Electronics, Advances in Electronic Packaging, 1995, vol. 10, pp. 1059-1068. [63] : [SHEET337] Y.H. PAO, R. GOVILA, An Experimental and Finite Element Study of Thermal Fatigue Fracture of Pb-Sn Solder Joints, ASME Journal of Electronic Packaging, 1993, vol. 115, pp. l-8. [64] : [SHEET344] R. SATOH, K. ARAKAWA, M. HARADA, K. MATSUI, Thermal fatigue life of Pb-Sn alloy interconnections, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, march 1991, vol. 14, no. 1, pp. 224-232.
[65] : [SHEET355] Z. KHATIR, S. LEFEBVRE, Thermal analysis of high power IGBT modules, ISPSD'2000, Toulouse, France, May 22-25, 2000, pp. 271-274. [66] : [SHEET357] G. COQUERY, Les modules IGBT de forte puissance. Leur essor dans les applications de traction ferroviaire, REE no. 9, pp. 52-59, Octobre 1998, Paris. [67] : [SHEET362] A. HAMIDI, G. COQUERY, R. LALLEMAND, Effects of current density and chip temperature distribution on lifetime of high power IGBT modules in traction working conditions, Microelectronics and Reliability, vol. 37, no. 10-11, Oct-Nov, 1997, pp. 1755-1758. [68] : [SHEET387] M. MARZ, P. NANCE, Thermal Modeling of Power-electronic Systems, Application Notes, Infineon Technologies AG, Munich. [69] : [SHEET394] S. SUMI, K. OHGA, K. SHIRAI, Thermal fatigue failures of large scale package type power transistor modules, ISTFA Symposium, 1989, pp 309-322. [70] : [SHEET514] J.P. SINGH, K. NIIHARA, D.P.H. HASSELMAN, Analysis of thermal fatigue behaviour of brittle structural materials, Journal of materials science, vol.16, pp.2789-2797, 1981. [71] : [SHEET533] G. COQUERY, R. LALLEMAND, Durée de vie des modules IGBT pour la traction ferroviaire. Apport de la technologie AlSiC. Critères de défaillance, méthodologie, normalisation, EPF'2000, 4 pages.
[72] : [TRIAC040] P. BLUNT, Reliable thyristors and triacs in TO-220 plastic packages, Electronic Components and Application, vol. 2, no 1, November 1979, pp. 53-58. [73] : [TRIAC044] G.D. ZOTTO, Reliability characteristics of 25A triac, 1982.
1.11 - Fatigue thermique - Courants accidentels ("repetitive surge") |
[1] : [SHEET272] D.E. PICCONE, L.J. WILLINGER, I.L. SOMOS, W.H. TOBIN, R.M. ANDRACA, L.O. ERIKSSON, J.A. BARROW, M.L. CHILDS, J. SCHWARTZENBERG, Clarification of Non-repetitive On-state Surge Current Ratings - Insight Into Proposed Ratings for Pulse Power Applications - [2] : [DATA043] Silicon Power, Technical papers, mars 2000. [3] : [DIV066] Recherche sur le mot clé : TRIAC*Lien : AN1172.pdf - THE NEW ACS SERIES: SERIES A BREAKTHROUGH IN RUGGEDNESS & DRIVE FOR HOME APPLIANCES
1.12 - Fatigue thermique - Chocs thermiques par di/dt ("hammering") |
[1] : [SHEET232] I.L. SOMOS, L.O. ERIKSSON, W.H. TOBIN, Establishing conditions for a meaningful di/dt test for thyristors, Proceedings of the Tenth International PCI '85 Conference, Chicago, Oct. 19855, pp. 113-121.
2.1 - Loi d'Arrhenius |
[1] : [THESE109] S. FORSTER, Fiabilité fonctionnelle et mécanismes de dégradation des TRIACs soumis aux chocs thermiques par di/dt à la fermeture, Thèse, Université de Metz, 10 septembre 2001. [2] : [LIVRE137] T.I. BAJENESCU, M.I. BAZU, Reliability of electronics components - A practical guide to electronic systems manufacturing, Springer, 1999, 509 pages.
2.2 - Loi d'Eyring |
[1] : [THESE109] S. FORSTER, Fiabilité fonctionnelle et mécanismes de dégradation des TRIACs soumis aux chocs thermiques par di/dt à la fermeture, Thèse, Université de Metz, 10 septembre 2001. [2] : [SHEET331] A. DASGUPTA, M. PECHT, Material failure mechanisms and damage models, IEEE Transactions on Reliability, vol. 40, no. 5, December 1991, pp. 531-536. [3] : [LIVRE137] T.I. BAJENESCU, M.I. BAZU, Reliability of electronics components - A practical guide to electronic systems manufacturing, Springer, 1999, 509 pages.
2.3 - Loi de puissance inverse |
[1] : [THESE109] S. FORSTER, Fiabilité fonctionnelle et mécanismes de dégradation des TRIACs soumis aux chocs thermiques par di/dt à la fermeture, Thèse, Université de Metz, 10 septembre 2001.
2.4 - Loi température humidité |
[1] : [THESE109] S. FORSTER, Fiabilité fonctionnelle et mécanismes de dégradation des TRIACs soumis aux chocs thermiques par di/dt à la fermeture, Thèse, Université de Metz, 10 septembre 2001.
2.5 - Loi température - non thermique |
[1] : [THESE109] S. FORSTER, Fiabilité fonctionnelle et mécanismes de dégradation des TRIACs soumis aux chocs thermiques par di/dt à la fermeture, Thèse, Université de Metz, 10 septembre 2001.
3.1 - La loi d'Aloisi |
[1] : [SHEET123] P. ALOISI, La fatigue thermique, Electronique de Puissance, no. 24, 1987, pp. 31-39.
3.2 - La loi d'Arrhenius |
[1] : [SHEET123] P. ALOISI, La fatigue thermique, Electronique de Puissance, no. 24, 1987, pp. 31-39. [2] : [TRIAC044] G.D. ZOTTO, Reliability characteristics of 25A triac, 1982. [3] : [SHEET165] V.S. CANDADE, Sequence test method for reliability evaluation of semiconductor devices, 1981.
3.3 - La loi de Coffin-Manson |
[1] : [SHEET166] A.T. ENGLISH, C.M. MELLIAR-SMITH, Reliability and failure mechanisms of electronic materials,Annual review of materials science, vol.8, 1978, pp. 459-495.
3.4 - Loi de Sarihan |
[1] : [SHEET326] V. SARIHAN, Energy based methodology for damage and life prediction of solder joints under thermal cycling, IEEE Components and Manufacturing Technology, vol. 17, pp. 626-631, 1994.
3.5 - Loi de Paris |
[1] : [SHEET321] R. SUNDARARAJAN, P. McCLUSKEY, S. AZARM, Semi analytic model for thermal fatigue failure of die attach in power electronic building blocks, 4th High Temperature Electronics Conference, 1998, pp.99-102. [2] : [SHEET337] Y.H. PAO, R. GOVILA, An Experimental and Finite Element Study of Thermal Fatigue Fracture of Pb-Sn Solder Joints, ASME Journal of Electronic Packaging, 1993, vol. 115, pp. l-8.
3.6 - Loi de Norris-Landzberg 1969 |
[1] : [SHEET344] R. SATOH, K. ARAKAWA, M. HARADA, K. MATSUI, Thermal fatigue life of Pb-Sn alloy interconnections, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, march 1991, vol. 14, no. 1, pp. 224-232.
Mise à jour le lundi 10 avril 2023 à 18 h 54 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.
Copyright 2023 : |
Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.