M.P. RODRIGUEZ, N.Y.A. SHAMMAS, "Finite element simulation of thermal fatigue in multilayer structures: thermal and mechanical approach", Elsevier Science, Microelectronics Reliability, Volume 41, Issue 4, April 2001, pp. 517-523.
Copyright - [Précédente] [Première page] [Suivante] - Home

Article : [PAP301]

Titre : M.P. RODRIGUEZ, N.Y.A. SHAMMAS, Finite element simulation of thermal fatigue in multilayer structures: thermal and mechanical approach, Elsevier Science, Microelectronics Reliability, Volume 41, Issue 4, April 2001, pp. 517-523.

Cité dans :[REVUE218] Elsevier Science, Microelectronics Reliability, Volume 41, Issue 4, Pages 481-624, April 2001.
Cité dans :[SHEET154]
Auteur : M. P. Rodriguez
Auteur : N. Y. A. Shammas

Source : Elsevier Science, Microelectronics Reliability.
Volume : 41
Issue : 4
Pages : 517 - 523
Lien : private/RODRIGUEZ1.pdf - 7 pages, 349 Ko.
Stockage : Thierry LEQUEU
Logiciel : ANSYS
Date : Avril 2001

Abstract :
The large difference in thermal expansion between dissimilar materials present in any electronic package is the source of a major problem to be solved in order to achieve improved reliability. In this paper, simplified thermal and mechanical finite element models are presented for the analysis of thermal stress derived problems. The problems investigated here include, thermal stresses in adhesive backbonds in surface mounted structures and effects of thermal fatigue in soft solder interfaces in conventional power modules such as insulated gate bipolar transistors modules. Full multi-dimensional mechanical and thermal analysis is made by using the commercial engineering computer package ANSYS. Validation of the thermal simulation is achieved by comparison between simulation and experimental test results, whereas a simple analytical model based upon the lap joint theory is used to verify the structural simulation.

Article Outline
1. Introduction
2. Thermal modelling of effects of thermal fatigue
2.1. Model description
2.2. Simulation results
2.3. Model validation
3. Modelling of thermal stresses in adhesive joints
3.1. Model description
3.2. Simulation results and model validation
4. Conclusion
References


Bibliographie

TOP

References : 6
[1] : M. Goland and E. Reissner, The stresses in cemented joints. J Appl Mech Trans ASME 11 (1944), pp. 17-27.
[2] : W.T. Chen and C.W. Nelson, Thermal stresses in bonded joints. IBM J Res Develop 23 2 (1979), pp. 179-188.
[3] : Touloukian YS, Powell RW, et al. Thermophysical properties of matter, vols. I and II. New York, Washington 1970.
[4] : ANSYS analysis manual. ANSYS is a trademark of Inc., Houston, PA.
[5] : M.P. Rodriguez, N.Y.A. Shammas et al., Static and dynamic finite element modelling of thermal fatigue effects in IGBT modules. Microelectron Reliab 40 (2000), pp. 455-463.
[6] : Tummala RR, Rymaszewski EJ. In: Van Nostrand Reinhold editor. Microelectronics packaging handbook, New York, 1989.


Mise à jour le lundi 10 avril 2023 à 18 h 54 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.

Copyright 2023 : TOP

Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.