R. SATOH, K. ARAKAWA, M. HARADA, K. MATSUI, "Thermal fatigue life of Pb-Sn alloy interconnections", IEEE Transactions on Components, Hybrids, and Manufacturing Technology, march 1991, vol. 14, no. 1, pp. 224-232.
Copyright - [Précédente] [Première page] [Suivante] - Home

Article : [SHEET344]

Titre : R. SATOH, K. ARAKAWA, M. HARADA, K. MATSUI, Thermal fatigue life of Pb-Sn alloy interconnections, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, march 1991, vol. 14, no. 1, pp. 224-232.

Cité dans :[SHEET326]
Cité dans :[SHEET320]
Auteur : Satoh R.
Auteur : Arakawa K.
Auteur : Harada M.
Auteur : Matsui K. -Hitachi Ltd., Yokohama, Japan

Stockage : Thierry LEQUEU
Lien : private/SATOH.pdf - 761 Ko, 9 pages.
Lien : SHEET326.HTM - référence [19]
Lien : SHEET320.HTM - référence [19]
Vers : Bibliographie
Source : Components, Hybrids, and Manufacturing Technology, IEEE Transactions on
Info : see also IEEE Trans. on Components, Packaging, and Manufacturing Technology, Part A, B, C.
Pages : 224 - 232
Date : March 1991
Volume : 14
Issue : 1
ISSN : 0148-6411
CODEN : ITTEDR

Abstract :
A highly accurate estimation of Pb-Sn alloy solder thermal fatigue life is made for surface mount
solder joints. Experiments were carried out on Pb-5Sn and Pb-63Sn alloy solders under thermal cycle
conditions of -55 to 150 degrees C/cycle/h. The thermal fatigue fracture of Pb-Sn solder joints
develops when cracks, initially generated from large-scale plastic deformation of the solder,
gradually propagate through the joint. On the fracture surface, striations of 500 A to 1 mu m in
size were observed and crack propagation rates (da/dN) are obtained for these solders. Additionally,
thermal stress and strain in solder joints is studied by the finite element method (FEM) using
three-dimensional and thermoelastoplastic models. The equivalent strain range (based on the Mises
criterion), obtained by FEM, relates strongly to thermal fatigue life. A thermal fatigue life
equation relating crack propagation to bonding size and thermal strain range is developed.

Subject_terms :
thermal fatigue life estimation; 3D models; temperature cycling; surface mount solder joints;
thermal cycle conditions; thermal fatigue fracture; Pb-Sn solder joints; large-scale plastic deformation;
fracture surface; striations; crack propagation rates; thermal stress; finite element method;
thermoelastoplastic models; strain range; Mises criterion; thermal fatigue life equation; bonding size;
thermal strain range; -55 to 150 C; Pb-Sn alloy interconnections; environmental testing;
finite element analysis; lead alloys; life testing; reliability; soldering; surface mount technology;
thermal stress cracking; tin alloys

Accession_Number : 3931545


Bibliographie

TOP

References : 26
[1] : K.C. Norris and A.H. Landzberg, "Reliability of controlled collapse interconnections", IBM J. Res. Develop., vol. 13, pp. 266, 1969.
[2] : R.N. Wild, "Fatigue properties of solder joints," Welding J., vol. 51, pp. 521S-526S.
[3] : R.N. Wild, "Some fatigue properties of solders and solder joints," presented at Internepcon, Brighton, England, 1975.
[4] : L.S. Goldmann, "Geometric optimization of controlled collapse interconnections," IBM J. Res. Develop., vol. 13, no. 3, pp. 251-265, May 1969.
[5] : P.A. Tobias, N.A. Sinclair, and A.S. Van, "The reliability of controlled-collapse solder LSI interconnections", in ISHM Proc, 1976, p. 60.
[6] : H.J. Shah and J.H. Kelly, "Effect of dwell rime on thermal cycling of the flip chip joint", in 1970 ISHM Proc., paper 3, 4, 1970.
[7] : N.A. Sinclair, "Thermal cycle fatigue life of LSI solder interconnections", in Proc. Int. Electrical, Electronics Conf. and Exposition, Toronto, Oct. 1982, p 56.
[8] : P.A. Totta. "Flip-chip solder terminals," in Proc. 21st Electronics Components Conf., Washington, DC, 1971, p. 275.
[9] : W. Engelmaier, "Fatigue life of leadless chip carrier solder joints during power cycling", IEEE Trans. Comp. Hybrids, Manufact. Technol., vol. CHMT-6. pp. 232-237, 183.
[10] : D. Tribula et al., "Observations on the mechanisms of fatigue in eutectic Pb-Sn solder joints", ASME Trans. J. Electron. Pack., vol. 111, pp. 83-89, June 1983.
[11] : L.R. Fax, J.W. Sofia, and M.C. Shine, "Investigation of solder fatigue acceleration factors", IEEE Trans. Comp., Hybrids. Manuf. Technol., vol. CHMT-8, pp. 175-281, 1985.
[12] : H.D. Solomon, "Fatigue of 60/40 solder", IEEE Trans. Comp., Hybrids, Manuf. Technol., vol. CHMT-9, pp 423-432, Dec. 1986.
[13] : J.H. Lau, D.W. Rice, and P.A. Avery, "Elasto-plastic analysis of surface-mount solder joints", IEEE Trans. Comp.. Hybrids, Manuf. Technol., vol. CHMT-IO, pp. 346 357, Sept. 1987.
[14] : R. Satoh, M Ohshima. K. Hirota, and I. Ishi, "Optimum bonding shape control on micro-solder joints of IC and LSI," J. Japan Inst. Metals, vol. 51, no. 6, pp. 553-560, 1987.
[15] : R. Satoh, M. Ohshima, and K. Arakawa, "Thermal fatigue life of Pb-Sn alloy joint on electronics circuits," in Proc. Conf. Japan Institute of Metals, 1988, p. 144.
[16] : A. Zubelewicz et al., "Lifetime prediction of solder materials", ASME Trans. J. Electronic Packaging, vol. 111, pp. 179-182, Sept. 1989.
[17] : S. S. Manson, "Fatigue: A complex subject-Some simple approximations", Experiment. Mech., vol 5, pp. 193-226. 1965.
[18] : L.F. Coffin, "Low cycle fatigue: A review", Appl. Mech. Res., vol. 1, no. 3, pp. 129-141, Oct. 1962.
[19] : L.F. Coffin, Jr., "A study of the effects of cyclic thermal stresses on a ductile metal", Trans. ASME, vol. 76, pp. 931-950, 1954.
[20] : T. Yokobori, Pep. Res. Inst. Str. and Frac. Mater., Tohoku Univ., vol. 5, p. 19, 1969.
[21] : K.I. Bathe, "ADINA - A finite element program for automatic dynamic incremental nonlinear analysis" , Rep. 82448-1, MIT, 1975.
[22] : C.I. Thwaites and W. B. Hampshire, Welding J., vol. 55, p. 323s, 1976.
[23] : C. Laird and G. C. Smith, Phil. Meg., vol. 7-77, p. 847, 1962.
[24] : C. Laird, ASTM STP, vol. 415, p. 131, 1967.
[25] : R.M.N. Pelloux, Trans. Amer. Soc. Metals, vol. 62, no. 1, p. 281, 1969.
[26] : R. Von, Mises: Nachr. Ges. Wiss. Gott., p. 582, 1913.

  [1] : [SHEET343] K.C. NORRIS, A.H. LANDZBERG, Reliability of Controlled Collapse Interconnections. IBM J. Res. Develop., vol. 13, p. 266 (1969).
  [2] :  [PAP158]  -------
  [3] :  [PAP158]  -------
  [4] :  [PAP158]  -------
  [5] :  [PAP158]  -------
  [6] : [SHEET393] H.J. SHAH, J.H. KELLY, Effect of Dwell Time on Thermal Cycling of the Flip-Chip Joint, Proceedings International Microelectronics Symposium, pp 341-346, 1970.
  [7] :  [PAP158]  -------
  [8] :  [PAP158]  -------
  [9] :  [PAP158]  -------
 [10] :  [PAP158]  -------
 [11] :  [ART501]  L.R. FOX, J.W. SOFIA, M.C. SHINE, Investigation of solder fatigue acceleration factors, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, June 1985, Vol. CHMT-8, No.2, pp. 275-282.
 [12] :  [PAP158]  -------
 [13] :  [PAP158]  -------
 [14] :  [PAP158]  -------
 [15] :  [PAP158]  -------
 [16] :  [PAP158]  -------
 [17] : [SHEET345] S.S. MANSON, Fatigue: A complex subject - Some simple approximations, Experimental Mechanics, vol. 5, pp.193-226, 1965.
 [18] : [SHEET346] L.F. COFFIN, Low cycle fatique: A review, Appl. Mech. Res., vol. 1, no. 3, pp. 129-141, oct. 1962.
 [19] : [SHEET329] L.F. COFFIN, A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal, Transactions of ASME, 1954, vol. 76, pp. 931-950.
 [20] :  [PAP158]  -------
 [21] :  [PAP158]  -------
 [22] :  [PAP158]  -------
 [23] :  [PAP158]  -------
 [24] :  [PAP158]  -------
 [25] :  [PAP158]  -------
 [26] :  [PAP158]  -------


Mise à jour le lundi 10 avril 2023 à 18 h 59 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.

Copyright 2023 : TOP

Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.