P. LALL, M. PECHT, E.B. HAKIM, "Characterization of functional relationship between temperature and microelectronic reliability", Microelectronics Reliability, Volume 35, Issues 3, March 1995, pp. 377-402.
Copyright - [Précédente] [Première page] [Suivante] - Home

Article : [ART263]

Titre : P. LALL, M. PECHT, E.B. HAKIM, Characterization of functional relationship between temperature and microelectronic reliability, Microelectronics Reliability, Volume 35, Issues 3, March 1995, pp. 377-402.

Cité dans :[REVUE313] Elsevier Science, Microelectronics Reliability, Volume 35, Issue 3, Pages 325-635, March 1995.
Auteur : Pradeep Lall,
Auteur : Michael Pecht,
Auteur : Edward B. Hakim

Vers : Bibliographie
Adresse : (1) CALCE Electronic Packaging Research Center, University of Maryland, College Park, MD 20742 USA
Adresse : (2) Army Research Laboratory, Component Reliability Branch, Electronics and Power Sources Directorate, AMSRL-EP-RA Fort Monmouth, NJ 07703-5601 USA
Adresse :
Tel. :
Fax. :
Source : Microelectronics Reliability
Volume : 35
Issues : 3
Date : March 1995
Pages : 377 - 402
DOI :
PII : 0026-2714(95)93067-K
Lien : private/LALL1.pdf - 1384 Ko, 26 pages.
Switches :
Puissance :
Logiciel :
Stockage : Thierry LEQUEU

Abstract :
The functional relationship between temperature and microelectronic reliability
is presently characterized by an Arrhenius relationship. The Arrhenius
relationship encourages lowering temperature to achieve reliability goals. In
this paper, the role of temperature in achieving cost-effective reliable
electronic equipment has been investigated. The effect of temperature on
reliability has been evaluated based on failure mechanisms and electrical
parameter variations. The device investigated in this paper is assumed to
consist of a bipolar or MOSFET (silicon) semiconductor device with device
packaging consisting of first-level interconnects that may be wirebonds,
flip-chip, or tape automated bonds, die attachment, substrate attachment, case,
lid, lid seal and lead seal. Failure mechanisms actuated under various
temperature stresses, including steady-state temperature, temperature cycling,
temperature gradients, and time-dependent temperature change, have been
identified for each of the package elements. A methodology for derivation of the
functional relationship between temperature and microelectronic reliability has
been discussed.


Bibliographie

TOP

Références : 82
[01] : Ajiki, T., Sugumoto, M., Higuchi, H., and Kumada, S. A New Cyclic Biased T.H.B. Test for Power Dissipating IC's. International Reliability Physics Symposium, (1979), 118-126.
[02] : Alexander, D.R. An Electrical Cverstress Failure Model for Bipolar Semiconductor Components. IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1 (1978), 345-353.
[03] : Arrhenius, S., Z. Physik. Chem., Volume 4, pp.226, 1889
[04] : Beasley, K. New Standards for CId. Quality and Reliability International, 6 (1990),289-294.
[05] : Berry, R.S., Rice, S.A., and Ross, J., Physical Chemistry, Wiley, NY, (1980)
[06] : Blanks, Henry J., "Arrhenius and the Temperature Dependence of Non-constant Failure Rate", Quality and Reliability Engineering International, 6, ( 1990), 259-265.
[07] : Blech, I.A., Meieran, E.S. Direct Transmission Electron Microscope Observations of Electrotransport in Aluminum Films. Applied Physics Letters, Il (1967), 263.
[08] : Bowles, John, " A Survey of Reliability Prediction Procedures for Microelectronic Devices", IEEE Transactions on Reliability, Vol. 41, No. 1, March (1992), pp. 2-12.
[09] : Boyko, K.C. and Gelarch, D.L. Time Dependent Dielectric Breakdown of 210A oxides. 27th Annual Reliability Physics Symposium. IEEE. (1989), 1-8.
[10] : Canali, C, Fatini, F ., Gaviraghi, S., and Senin, A. Reliability Problems in TTL-LS Devices. Microelectronics and Reliability. 21 (1981),637.651.
[11] : Clark, I.D., Harrison, L.G., Kondratiev, V.N., Szabo, Z.G., Wayne, R.P., The Theory of Kinetics, Edited by C.H. Bamford and C.F.H. Tipper, Elsevier Scientific Amsterdam, (1979)
[12] : CNET, Recueil de Donnees de Fiabilitie du CNET (Collection of Reliability DATA from CNET), Centre National d'Etudes des Telecommunications (National Center for Telecommunication Studies) ( 1983).
[13] : Crook, D.A. Techniques for Evaluating Long Term Cxide Reliability At Wafer Level. IEDM technical digest, (1978), 444-448.
[14] : DiStefano, T .H. and Shatzkes, M. Dielectric Stability and Breakdown in Wide Bandgap Insulators. Journal Vacuum Science Technology, 12 (1975), 37.
[15] : Evans, M.G., Polanyi, M., Faraday Society (London) Transactions, Volume 34, pp. 11, 1938
[16] : Eyring, H., LIn, S.H., Lin, S.M., Basic Chemica/ Kinetics. Wiley. New York, 1980
[17] : Fukuzawa, I., Ishiguro, S., and Nanbu, S. Moisture Resistance Degradation of Plastic LSI's By Reflow Soldering. Proceedings 23rd Annual International Reliability Physics Symposum,(1985), 192-197.
[18] : Gaffeny, J. InternaI Lead Fatigue Through Thermal Expansion in Semiconductor Devices. IEEE Transactions, Electronic Devices, ED-15 ( 1968), 617.
[19] : Hakim, Edward B., "Reliability Prediction: Is Arrhenius Erroneous?", Solid State Technology, (August 1990), 57.
[20] : Handbook of Reliability Data for Components Used in Telecommunication Systems, Issue 4 (HRD4), British Telecom, January (1987).
[21] : Harari, E. Dielectric Breakdown ln Electrically Stressed Thin Films of Thermal SiC.,. Journal of Applied Physics, 49 (1978),2478. -
[22] : Hannan, G.G. Metallurgical Failure Modes of Wire Bonds. 12th International Reliability Physics Symposium, (1974), 131.141.
[23] : Hart, A., Teng, T.T., and McKenna, A. Reliability Influences from Electrical Overstress on LSI Devices. 18/h Annual Proceedings International Reliability Physics Symposium, (1980), 190-196.
[24] : Holland, S., Chen, I.C., Ma, T.P., and Hu, C. Physical Models for Gate Oxide Breakdown, IEEE Electron Device Letters, 5 (1984), 302.
[25] : Honda, K., Ohsawa, A.. and Toyokura, N. Breakdown in Silicon Oxides: Correlation with Cu Precipitates. Applied Physics Let/ers, 45 (1984), 270.
[26] : Hsu, F. C. and Chiu, K. Y. Temperature Dependence of Hot Electron Induced Degradation in MOSFET's. IEEE Electron Devices Let/ers. EDL-5 (1984).
[27] : Hu, j., Pecht, M., and Dasgupta, A. A Probabilistic Approach for Predicting Thermal Fatigue Life of Wirebonding in Microelectronics, ASME Journal of Electronic Packaging, 113 ( 1991 ), 275.
[28] : Hu, C. Hot Electron Effects in MOSFET'S. IEDM technical diges/. (1983). 176.
[29] : IITRJ/Honeywell. VHSICIVHSIC-Like Reliability Prediction Modeling, Contract No F30602-86-C-0261, 15 January ( 1988).
[30] : Klinger, David j., "On the Notion of Activation Energy in Reliability: Arrhenius, Eyring, and Thermodynamics", 1991 Proceedings of Annual Reliability and ,Yaintainability Symposium, 1991, pp.295-300.
[31] : Ko, P.K. Hot Electron Effects in MOSFET'S, Ph.D Dissertation, EECS Dept.. U.C. Berkeley (1982).
[32] : Kuo, W. and Kuo, Y. Facing the Headache of Early Failures: State of the Art Review of Bum-in Decisions. Proceedings IEEE, 71 (1983), 1257-1266.
[33] : LaCombe, D.j., Dening, D.C., and Christou, A. A New Failure Mechanism in Thin Gold Films at Elevated Temperature. 20th Proceedings of International Reliability Physics Symposium. (1982), 81-87.
[34] : Lall, P., Pecht, M., Hakim, E., Estimating the Role of Temperature on Microelectronic Device Reliability, John Wiley and Sons, New York, estimated publishing date May 1994.
[35] : Lee, j., Chen, I.C., and Hu, C. Modeling and Characterization of Gate Oxide Reliability. IEEE Transactions on Electron Devices, 35 (1988), 2268.
[36] : Lee, J., Chen, I.C., and Hu. C. Statistical Modeling of Silicon Dioxide Reliability. 26th Annual International Reliability Physics Symposium, (1988), 131-138.
[37] : Liehr, M., Bronner, G.B., and Lewis, J.E. Stacking-fault-induced Defect Crcation in SiO: on Si( 100). Applied Physics Letters, 52 ( 1988), 1892.
[38] : Lin, P.S.D., Marcus, R.B., Sheng, T.T. Leakagc and Breakdown in rhin Oxide Capacitors: Correlation with Decorated Stacking Faults. Journal of Electrochemical Society, 130 (1983), 1878.
[39] : Lloyd, J.R., and Shatzkes, M., and Challaner, D.C. Kinetic Study of Electromigration Failure in Cr/AI-Cu Thin Film Conductors Covered with Polyimide and the Problem of the Stress Dependent Activation Energy. IEEE International Reliability Physics Symposium, ( 1988), 216-225.
[40] : LSI Logic, Reliability Manual and Data Summary, Milpitas, CA, ( 1990), 12-18.
[41] : Machiels, F., Lijbers, O., Allaire, R., and Poiblaud, O. Derating of Results According to Various Models and Prediction of Lifetimes of Plastic SMD's under Humidity Stress Conditions, 5th International Conference Quality in Electronic Components, Failure Prevention, Detection and Analysis, Bordeaux-France, (1991), 869-874.
[42] : Matsumoto, H., Sawada, K., Asai, S., Hirayama, M., and Nagasawa, K. Effect of Long Term Stress on IGFET Degradations Due to Hot Electron Trapping. IEEE Transactions on Electron Devices, ED-28 (1981), 923-928.
[43] : McAteer, 0.1. Electrostatic Discharge Control, New York: McGraw-Hill Publishing Company (1989).
[44] : McLinn. 1.A. Constant Failure Rate: A Paradigm Transition. Quality and Reliability International, 6 (1990),237-241.
[45] : McPherson, 1. W. and Baglee, D.A. Acceleration Factors for Thin Gate Oxide Stressing. 23rd Annual Reliability Physics Symposium, IEEE, (1985), 1-5.
[46] : MIL-HDBK 217F, Reliability Prediction ofElectronic Equipment, MIL-HDBK 217F, U.S. Department of Defense, Washington D.C. (1991).
[47] : Moss, R. Y. Caution: Electrostatic Discharge at Work, IEEE Transactions Component Hybrids and Manufacturing Technology, 5, (1982), 512-515.
[48] : Ning, T.H., Cook, P.W.. Dennard, R.H., Osburn, C.M., Schuster, S.E., and Yu, H.W. 1mrn MOSFET VLSI Techno1ogy Part IV: Hot Electrons Design Constraints. IEEE Transactions on Electron Devices, ED-26 (1979), 346-353.
[49] : Takeda, E., Nakagome, Y., Kume, H., Suzuki, N., and Asai, S. Comparison of Characteristic of N-Channe1 and P-Channel MOSFET's for VLSI. IEEE Transactions on Electron. Devices, ED-30 (1983), 675-680.
[50] : Nippon Telegraph and Telephone Corporation (NIT), Standard Reliability Table for Semiconductor Devices, March (1985).
[51] : O'Connor. Patrick D. T., "Reliability Prediction: Help or Hoax?", Solid State Technology, (August 1990),59-61.
[52] : Pancho1y, R.K. and Jhnoki, T. CMOS/SOS Gate Potection Networks. IEEE Transactions on Electronic Devices, ED-25 (1978),917-925.
[53] : Pecht, M., Lall, P ., Hakim, E.B., The Influence Of Temperature On Integrated Circuit Failure Mechanisms, Quality and Reliability Engineering International Journal, Vol. 8. pp. 167-175, 1992
[54] : Pecht, M., Ramappan, V ., " Are Components Still the Major Problem: A Review of Electronic System and Device Field failure Returns", IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.15, No.6, December (1992), pp.1-5.
[55] : Pecht, M. and Ko, W. A Corrosion Rate Equation for Microelectronic Die Metallization, International. Journal for Hybrid Microelectronics, 13 (1990), 41-52.
[56] : Pecht, M., U.S. Japanese Technology Evaluation Center Visit, Private Communications, 1993
[57] : Phillips, W.E. Microe1ectronic Ultrasonic Bonding, 0.0. Harman, ed., National Bureau of Standards (U.S.), Spec. Publ. 400-2, (1974),80-86.
[58] : Pecht, M., Lal1, P., and Dasgupta, A. A Fai1ure Prediction Model for Wire Bonds. Proceedings of the 1989 International Symposium on Hybrids Microelectronics, (1989),607-613.
[59] : Ravi, K. V. and Philosky, E.M. Reliability Improvement of Wire Bonds Subjected to Fatigue Stresses. lOth Annual Proceedings IEEE Reliability Physics, Symposium, (1972), 143-149.
[60] : Reif, F., Fundamentals of Statistical and Thermal Physics, McGraw Hill, New York, 1965
[61] : Ricco, B., Azbel, M. Ya., and Brodsky, M.H. Novel Mechanism for Tunneling and Breakdown of rhin SiO2 Films. Physics Review Letters, 51 (1983), 1795.
[62] : Rome Air Development Center, RAC (Reliability Analysis Center), IC Quality Grades; Impact on System Reliability and Life Cycle Cost, SOAR-3, (1985).
[63] : Runayan. W.R. Silicon Semiconductor Technology, New York: McGraw-Hill Company (1965).
[64] : Schnable, G.1-. Failure Mechanisms in Microelectronic Devices. Microelectronics and Reliability, Artech House Inc., 1 (1988), 25-87.
[65] : Schwarzenberger, A.P., Ross, C.A., Evetts, l.E., and Greer, A.L. Electromigration in Presence of A Temperature Gradient: Experimenta1 Study and Modeling. Journal of Electronic Materials, 17 ( 1988), 473-478.
[66] : Setliff, James E.. " A Review of Commercial Microcircuit Qualification and Reliability Methodology", Proceedings of the 1991 Advanced Microelectronics Technology, Qualification. Reliability and Logistics Workshop, August 13.15, Seattle, WA, (1991),325-335.
[67] : Shirley, G.C. and Hong, C.E. Optimal Acceleration of Cyclic THB Tests for Plastic Packages Devices. 29th International Reliability Physics Symposium,(1991), 12-21.
[68] : Siemens Standard, SN29500, Reliabilty and Quality Specification Failure Rates of Components, (1986)
[69] : Smith, l.S. El Overstress Failure Analysis in Microcircuits. 16th Annual Proceedings International Reliability Physics Symposium. (1978), 41-46.
[70] : Stojadinovic, N.D. Failure Physics of Integrated Circuits: A Review. Microelectronics and Reliability. 23 (1983), 609- 707.
[71] : Swartz, G.A. Gate Oxide Integrity ofNMOS Transistor Arrays. IEEE Transactions on Electron Devices, ED-33, ( 1986), 1826- 1829.
[72] : Sze, S.M. Physics of Semiconductor Devices, 2nd edition, N. y ., John Wiley and Sons, ( 198 I ), 30-47.
[73] : Thomas, R. W., and Ca1abrese, D. W. Phenomenologica1 Observations on Electromigration. 21st Proceedings of International Reliability Physics Symposium, (1983), 1-9.
[74] : Villela, F. and Nowakowski, M. F. Investigation of Fatigue Problems in I-mil Diameter Thermocompression and Ultrasonic Bonding of Aluminum Wire. NASA Technical Memorandum, NASA TM-X-64566 (1970).
[75] : Wendt, H., Cerva, H., Lehmann, V., and Pamler, W. Impact of Copper Contamination on the Quality of Silicon Oxides. Journal of Applied Physics, 65 (1989), 2402.
[76] : Crook, D.A. Method of Determining Re1iability Screens for rime Dependent Dielectric Breakdown. 17lh .4nnual Reliability Physics Symposum, (1979), 1-7.
[77] : Wigner, E.P., Faraday Society (London) Transactions, Volume 34, pp. 29, 1938
[78] : Witzmann, Sorin, and Giroux, Yves, "Mechanical Integrity of the IC Device Package: A Key Factor in Achieving Failure Free Product Performance", Transactions of the First International High Temperature Electronics Conference, Albuquerque, (June 1991), 137-142.
[79] : Wong, K.L. The Bathtub Does Not Hold Water Any More. Quality and Reliability International, 6 ( 1990), 279-282.
[80] : Wong, Kam L., "What Is Wrong With the Existing Reliability Prediction Methods?", Quality and Reliability Engineering International, 6, ( 1990), 251-257.
[81] : Woods, M.H. and Rossenburg, S. EPROM Reliability; Parts l and II: Electronics, Microelectronics and Reliability, 53 {1980), 133-141.
[82] : Wunsch, D.C. and Bell, R.R. Determination of Threshold Failure Levels of Semiconductor Diodes and Transistors Due to Pulse Voltages. IEEE Transactions on Electron Devices, NS-15 {1968), 244-259.
  [1] :  [PAP158]  -------
  [2] :  [PAP158]  -------
  [3] :  [ART271]  S. ARRHENIUS, Uber die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren, Z. Physik. Chem., Volume 4, pp.226, 1889.
  [4] :  [PAP159]  ...
  [5] :  [ART525]  K.L. WONG, What is wrong with the existing reliability prediction methods?, Quality and Reliability Engineering International, Vol. 6, No 4, 1990, pp. 251-257.


Mise à jour le lundi 10 avril 2023 à 18 h 46 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.

Copyright 2023 : TOP

Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.