B. K. JONES, "Logarithmic distributions in reliability analysis", Microelectronics Reliability, Volume 42, Issues 4-5, April-May 2002, pp. 779-786.
Copyright - [Précédente] [Première page] [Suivante] - Home

Article : [ART234]

Titre : B. K. JONES, Logarithmic distributions in reliability analysis, Microelectronics Reliability, Volume 42, Issues 4-5, April-May 2002, pp. 779-786.

Cité dans :[REVUE296] Elsevier Science, Microelectronics Reliability, Volume 42, Issues 4-5, Pages 463-804, April - May 2002.
Cité dans : [DIV334]  Recherche sur les mots clés power cycling of power device, mai 2002.
Auteur : B. K. Jones

Vers : Bibliographie
Adresse : Department of Physics, School of Physics and Chemistry, Lancaster University, Lancaster LA1 4YB, UK
Tel. : +44-1524-593657
Fax. : +44-1524-844037
Lien : mailto:b.jones@lancaster.ac.uk
Source : Microelectronics Reliability
Volume : 42
Isues : 4-5
Date : April-May 2002
Pages : 779 - 786
DOI : 10.1016/S0026-2714(02)00031-8
PII : S0026-2714(02)00031-8
Lien : private/JONES1.pdf - 8 pages, 131 Ko.
Switches :
Puissance :
Logiciel :
Stockage :

Abstract :
Real-life systems are complex, with many independent parameters which can affect
the system. Their behaviour can therefore be very variable. This is especially
true of the more involved processes which occur in reliability and degradation
processes. However, there are some characteristics which are observed which can
be understood simply because they are characteristic of complex systems. These
include distributions that are very often logarithmic rather than uniform,
log-normal failure distributions and 1/f noise. A wide variety of diverse
examples is given to illustrate the common occurrence of such observations
together with the underlying unifying themes. There are several basic reasons
for the origin of logarithmic distributions. One is that they arise from
multiplicative processes. Another is that although basic science is often
introduced as linear, with non-linear effects added as a correction, complex
systems are often inherently non-linear. This produces multiplicative effects,
such as harmonic generation and fractal behaviour.

Article Outline
1. Introduction
2. Pareto and Zipf
3. Scale invariance
4. Benford
5. 1/f noise
6. Log-normal distributions
7. Conclusions


Bibliographie

TOP

Références : 36
[1] : B.K. Jones In: D. Abbott and L.B. Kish, Editors, Proceedings of International Conference on Unsolved Problems of Noise and Fluctuations (UPON), Adelaide, 1999, IOP Publishing, Bristol (2000), pp. 115-123. Abstract-INSPEC
[2] : K. Wiesenfeld , Resource letter: ScL-1: scaling laws. Am J Phys 69 (2001), pp. 938-942. Abstract-INSPEC | Full-text via CrossRef
[3] : M. Schroeder , Fractals, chaos, power laws. , W.H. Freeman and Co., New York (1992).
[4] : Pareto V. Cours d'economie politique. Lausanne, 1897.
[5] : G.K. Zipf , Human behaviour and the principle of least effort. , Hafner Publishing Co., New York and London (1949) [Reprinted 1965] .
[6] : B. Mandelbrot , The Pareto-Levy law and the distribution of income. Int Econom Rev 1 (1960), pp. 79-106.
[7] : G. Troll and P. beim Graben , Zipf's law is not a consequence of the central limit theorem. Phys Rev 57 (1998), pp. 1347-1355. Abstract-INSPEC | APS full text | Full-text via CrossRef
[8] : D.W. Thompson , On growth and form. , Cambridge University Press, Cambridge (1961).
[9] : L. Ball , The self-made tapestry. , Oxford University Press, Oxford (1999).
[10] : D.L. Turcotte , Self-organised criticality. Rep Prog Phys 62 (1999), pp. 1377-1429. Abstract-INSPEC | Full-text via CrossRef
[11] : R.A. Raimi , The peculiar distribution of first digits. Sci Am 121 (1969), pp. 109-122.
[12] : M.E. Lines , A number for your thoughts. , Adam Hilger, Bristol (1986).
[13] : L. Pietronero, E. Tosatti, V. Tosatti and A. Vespignani , Explaining the uneven distribution of numbers in nature: the laws of Benford and Zipf. Physica A 293 (2001), pp. 297-304. SummaryPlus | Article | Journal Format-PDF (136 K)
[14] : P.R. Turner , The distribution of leading significant digits. IMA J Numer Anal 2 (1982), pp. 407-412. Abstract-INSPEC | MathSciNet
[15] : P.R. Turner , Further revelations on L.S.D. IMA J Numer Anal 4 (1984), pp. 225-231. MathSciNet
[16] : D.S. Lemons , On the number of things and the distribution of first digits. Am J Phys 54 (1986), pp. 816-817. Abstract-INSPEC
[17] : B.J. West and M.F. Schlesinger , On the ubiquity of 1/f noise. Int J Modern Phys B 3 (1989), pp. 795-819. Abstract-INSPEC | MathSciNet
[18] : Matthews R. The power of one. New Scientist, 10 July, 1999.
[19] : M.B. Weissman , 1/f noise and other slow, nonexponential kinetics in condensed matter. Rev Mod Phys 60 (1988), pp. 537-571. Abstract-INSPEC | Full-text via CrossRef
[20] : Sh. Kogan , Electronic noise and fluctuations in solids. , Cambridge University Press, Cambridge (1996) p. 203 .
[21] : B.K. Jones , Electrical noise as a measure of quality and reliability in electronic devices. Adv Electron Electr Phys 87 (1993), pp. 201-257.
[22] : Machlup S, Hoshiko T. Scale invariance implies 1/f spectrum. Second International Symposium on 1/f noise, Orlando, March 1980.
[23] : B.B. Mandelbrot and J.R. Wallis , Noah, Joseph, and operational hydrology. Water Res Res 4 (1968), pp. 909-918.
[24] : M.J. Buckingham , Noise in electronic devices and systems. , Ellis Horwood Ltd., Chichester (1983) p. 155 .
[25] : M.S. Keshner , 1/f noise. Proc IEEE 70 (1982), pp. 212-218. Abstract-INSPEC | Abstract-Compendex
[26] : G.W. Wornell Proc IEEE 81 (1993), pp. 1428-1450. Abstract-INSPEC | Abstract-Compendex | Full-text via CrossRef
[27] : D. Halford , A general mechanical model for f spectral density random noise with special reference to flicker, 1/f, noise. Proc IEEE 56 (1968), pp. 251-259.
[28] : C. Heiden , Power spectrum of stochastic pulse sequences with correlation between the pulse parameters. Phys Rev 188 (1969), pp. 319-326. Abstract-INSPEC | Full-text via CrossRef
[29] : F. Gruneis , 1/f noise and intermittency due to diffusion of point defects in a semiconductor material. Physica A 282 (2000), pp. 108-122. SummaryPlus | Article | Journal Format-PDF (150 K)
[30] : R.F. Voss and J. Clarke , 1/f noise in music: music from 1/f noise. J Acoust Soc Am 63 (1978), pp. 258-263. Abstract-INSPEC | Abstract-Compendex
[31] : H.O. Peitgen and D. Saupr, Editors, The science of fractal images, Springer (1988).
[32] : J.M. Halley and P. Inchausti , 1/f noise: an appropriate stochastic process for ecology. In: Proceedings of the 16th International Conference `Noise in physical systems and 1/f noise' (ICNF 2001), Gainsville, 2001, World Scientific, Singapore (2001), pp. 797-800.
[33] : M.J. Campbell and B.W. Jones , Cyclic changes in insulin needs of an unstable diabetic. Science 177 (1972), pp. 889-891. Abstract-MEDLINE 34. NIST/SEMATECH Engineering Statistics Internet Handbook. http://www.itl.nist.gov/div898/handbook/.
[35] : E. Limpert, W.A. Stahel and M. Abbt , Log-normal distributions across the sciences: keys and clues. Bioscience 51 (2001), pp. 341-352. Abstract-Elsevier BIOBASE
[36] : A.J. Holden, R.W. Allen, K. Beasley and D.R. Parker , Death by a thousand cuts. Qual Reliab Eng Int 4 (1988), pp. 247-254.


Mise à jour le lundi 10 avril 2023 à 18 h 46 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.

Copyright 2023 : TOP

Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.