P. REY, E. WOIRGARD, J.-M. THEBAUD, C. ZARDINI, "Evaluation of the creep of the Sn62Pb36Ag2 solder alloy by the measurement of the stresses in a silicon die", IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 21, Issue
Copyright - [Précédente] [Première page] [Suivante] - Home
Article : [PAP224]
Titre : P. REY, E. WOIRGARD, J.-M. THEBAUD, C. ZARDINI, Evaluation of the creep of the Sn62Pb36Ag2 solder alloy by the measurement of the stresses in a silicon die, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 21, Issue 2, June 1998, pp. 365-372.
Cité dans : [DIV289] Recherche sur l'auteur Christian ZARDINI, juillet 2004.
Cité dans : [DIV441] Recherche sur l'auteur Eric WOIRGARD, juillet 2004.
Cité dans :[ART267]
Auteur : Rey, P.
Auteur : Woirgard, E.
Auteur : Thebaud, J.-M.
Auteur : Zardini, C - WEHRLE Autoelektronik GmbH, Waldshut-Tiengen, Germany
Vers : Bibliographie
Lien : ART267.HTM#Bibliographie - référence [3].
Stockage : Thierry LEQUEU
Lien : private/ZARDINI1.pdf - 247 Ko, 8 pages.
Source : Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on [see also Components, Hybrids, and Manufacturing Technology, IEEE Transactions on]
Pages : 365 - 372
Info : this conference was held on 26-30 Oct. 1997
Date : June 1998
Volume : 21
Issue : 2
ISSN : 1070-9886
CODEN : IMTAEZ
Accession_Number : 6011962
Abstract :
The Sn/sub 62/Pb/sub 36/Ag/sub 2/ solder alloy is widely used in
electronic applications. To predict the lifetime and to control
the reliability of power devices, solder creep law must be taken
into account in the thermomechanical finite element simulations.
The creep law used in the simulations must be the most
representative of the real behaviour of the solder joint in its
operating environment. To determine a mathematical model of the
solder creep, silicon stress chips with piezoresistive sensors
are used. These chips are mounted on a substrate so that the
solder joints have the same microstructure as that in an
operating standard power hybrid assembly. Nevertheless the
measurements are made on the top of the silicon chip where are
located the stress sensors, while the solder joint is on the
bottom of the chip. This is why finite element calculations are
necessary to fit the creep within the solder alloy. From these
experimental data, the equivalent stresses at the surface of the
silicon have been calculated. As a result, we have obtained the
evolution in time of the equivalent stresses at the die surface.
In this paper, we show how this experimental curve has been used
in thermomechanical finite element simulations to find a
mathematical model of the creep in the solder. Then this formula
allows for an extrapolation of the behaviour in time of the
solder and then of the hybrid assembly in simulations.
Subject_terms : tin alloys; creep; IMS; stress measurement; silicon die; hybrid assembly; lifetime; reliability; power device; thermomechanical finite element simulation; mathematical model; piezoresistive sensor; Sn/sub 62/Pb/sub 36/Ag/sub 2/ solder alloy; Sn/sub 62/Pb/sub 36/Ag/sub 2/; Si
References : 22
[1] : D. Tribula and J. W. Morris Jr., "Creep in shear of experimental solder joints", ASME J. Electron. Packag., vol. 112, no. 2, pp. 87-93, June 1990.
[2] : R. J. Iannuzzelli, "Finite element modeling in the manufacture and assembly of printed circuit board", in Proc. ANSYS Conf., Pittsburgh, PA, May 1-5, 1989, vol. 2, pp. 3.63-3.71.
[3] : N. F. Enke, T. J. Kilinski, S. A. Schroeder, and J. R. Lesniak, "Mechanical behaviors of 60/40 tin-lead solder lap joints", in Proc. 39th Electron. Comp. Conf., 1989, pp. 264-272.
[4] : R. Tiziani, M. Mermet-Guyennet, and V. Motta, Technical Note, Packag. Develop. Dept., SGS-Thomson Microelectronics SpA.
[5] : D. A. Bittle and J. C. Suhling, "Piezoresistive stress sensors for structural analysis of electronic packages", ASME J. Electron. Packag., vol. 113, no. 3, pp. 203-214, Sept. 1991.
[6] : R. E. Beaty, J. C. Suhling, and Ch. A. Moody, "Calibration consider-ations for piezoresistive-based stress sensors", in Proc. 40th Electron. Comp. Technol. Conf., 1990, pp. 797-806.
[7] : R. C. Jaeger, J. C. Suhling, and R. Ramani, "Errors associated with the design, calibration and application of piezoresistive stress sensors in (100) silicon", IEEE Trans. Comp., Packag., Manufact. Technol., vol. 17, pp. 97-107, Feb. 1994.
[8] : O. N. Tufte and E. L. Stelzer, "Piezoresistive properties of silicon diffused layers", J. Appl. Phys., vol. 34, no. 2, pp. 313-318, Feb. 1963.
[9] : O. N. Tufte and E. L. Stelzer, "Piezoresistive properties of heavily doped n -type silicon", Phys. Rev., vol. 133, no. 6A, pp. 1705-1716, Mar. 1964.
[10] : R. C. Jaeger, J. C. Suhling, and A. A. Anderson, "A (100) silicon stress test chip with optimized piezoresistive sensor rosettes", in Proc. 44th lectron. Comp. Technol. Conf., 1994, pp. 741-749.
[11] : J. F. Nye, Physical Properties of Crystals. Oxford, U.K.: Oxford Univ. Press, 1957.
[12] : Y. Kada, "A graphical representation of the piezoresistance coefficients in silicon", IEEE Trans. Electron Devices, vol. ED-29, Jan. 1982.
[13] : P. Rey, "Contribution à l’intégration des circuits de puissance adaptée à l’électronique automobile", Ph.D. thesis, Univ. Bordeaux, France, 1996.
[14] : J. H. Lau, Thermal Stress and Strain in Microelectronics Packaging. New York: Van Nostrand Reinhold, 1993.
[15] : H. Miura, A. Nishimura, S. Kawai, and K. Nishi, "Development and application of the stress sensing test chip for IC plastic packages", in Proc. 64th Annu. Meeting Jpn. Soc. Mech. Eng., 1987, pp. 1826-1832.
[16] : P. J. Adams, "Thermal fatigue of solder joints in microelectronics devices", M.S. thesis, Mass. Inst. Technol., Cambridge, Aug. 1986.
[17] : T.-Y. Pan, "Thermal cycling induced plastic deformation in solder joints, accumulated deformation in surface mount joints", J. Electron. Packag., vol. 113, pp. 8-15, Mar. 1991.
[18] : R. Darveaux and K. Banerji, "Constitutive relation for tin-based solder joints", IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 15, pp. 1013-1024, Dec. 1992.
[19] : C. G. Schmidt, "A phenomenological constitutive model for type Sn62 solder wire", in Proc. 39th Electron. Comp. Conf., 1989, pp. 253-258.
[20] : R. M. V. Pidapacti and X. Song, "Fatigue crack propagation life analysis of solder joints under thermal cyclic loading", in Theoretical nd Applied Fracture Mechanics. London, U.K.: Elsevier, 1996, vol. 14, pp. 157-164.
[21] : J. H. Schneibeibel and P. M. Hazzledine, "Superanelasticity in super-plastic SnPb alloys", Acta Metall., vol. 30, pp. 1223-1230, 1982.
[22] : D. Heitkamp, "Implementation of a user-defined creep law", ANSYS News, pp. 11-14, 1994.
[1] : [THESE115] P. REY, Contribution à l'intégration des circuits de puissance adaptée à l'électronique automobile, 1996, Bordeaux, 245 pages.
Mise à jour le lundi 10 avril 2023 à 18 h 54 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.
Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.