Article : [ART293]
Titre : P.M. IGIC, P.A. MAWBY, M.S. TOWERS, W. JAMAL, S. BATCUP, Investigation of the power dissipation during IGBT turn-off using a new physics-based IGBT compact model, Microelectronics Reliability, Volume 4, Issues 7, July 2002, pp. 955-1151.
Cité dans :[REVUE354] Elsevier Science, Microelectronics Reliability, Volume 42, Issue 7, Pages 995-1151, July 2002.Auteur : P. M. Igic
Vers : Bibliographie
Adresse : Department of Electrical and Electronic Engineering, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK
Tel. : +44-1792-295595
Fax. : +44-1792-295686
Lien : mailto:p.igic@swan.ac.uk
Source : Microelectronics Reliability
Volume : 42
Issues : 7
Date : July 2002
Pages : Document
DOI : 10.1016/S0026-2714(02)00016-1
PII : S0026-2714(02)00016-1
Lien : private/IGIC1.pdf - 288 Ko, 8 pages.
Switches :
Puissance :
Logiciel :
Stockage :
Abstract :
New compact models of the IGBTs (both non-punch through IGBT (NPTIGBT) and
punch-through IGBT (PTIGBT)) are presented in this paper. The models are
implemented in the SABER circuit simulator and used for a study of IGBT anode
current and voltage characteristics during a device turn-off (clamped inductive
load circuit with gate controlled turn-off), since these parts of the transient
characteristics essentially predict the power dissipation (V×I) inside the
device. It is shown that PTIGBTs are faster than NPTIGBTs, this becoming more
apparent at higher clamp voltages.
Article Outline
Nomenclature
1. Introduction
2. Ambipolar diffusion equation and IGBT carrier storage region
3. Non-punch through IGBT model
3.1. Plasma carrier distribution
3.2. Forward junction voltages
3.3. The ohmic voltage drop
3.4. Depletion voltages
3.5. Depletion capacitance
3.6. Channel current of the MOS part of the IGBT
4. Punch-through IGBT model
5. Simulation results and discussion
6. Conclusions
[Fig] : 1. Schematic representation of the NPTIGBT structure (a) and bipolar part of the structure (b).
[Fig] : 2. 1D diagram of the bipolar part of the PTIGBT.
[Fig] : 3. Clamped inductive load circuit.
[Fig] : 4. Simulated NPTIGBT anode current turn-off waveforms for a clamped inductive load.
[Fig] : 5. Simulated NPTIGBT anode voltage turn-off waveforms for a clamped inductive load.
[Fig] : 6. Carrier concentration at the left (anode/n-base) plasma edge decay during turn-off of the NPTIGBT.
[Fig] : 7. Simulated PTIGBT anode current turn-off waveforms for a clamped inductive load.
[Fig] : 8. Simulated PTIGBT anode voltage turn-off waveforms for a clamped inductive load.
[Fig] : 9. IRG4BC20UD IGBT¯¯anode voltage and current turn-on waveforms.
[Fig] : 10. IRG4BC20UD IGBT¯¯anode voltage and current turn-off waveforms.
Table 1. PTIGBT and NPTIGBT parameters (<1K)
Table 2. IRG4BC20UD IGBT¯¯extracted parameter values (<1K)
Bibliographie |
Mise à jour le lundi 10 avril 2023 à 18 h 46 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.
Copyright 2023 : |
Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.