S.K. MAZUMDER, K. ACHARYA, C.L. HAYNES, R. WILLIAMS, M.R. VON SPAKOVSKY, D.J. NELSON, D.F. RANCRUEL, J. HARTVIGSEN, R.S. GEMMEN, "Solid-Oxide-Fuel-Cell Performance and Durability: Resolution of the Effects of Power-Conditioning Systems and Application Loa
Copyright - [Précédente] [Première page] [Suivante] - Home

Article : [ART607]

Titre : S.K. MAZUMDER, K. ACHARYA, C.L. HAYNES, R. WILLIAMS, M.R. VON SPAKOVSKY, D.J. NELSON, D.F. RANCRUEL, J. HARTVIGSEN, R.S. GEMMEN, Solid-Oxide-Fuel-Cell Performance and Durability: Resolution of the Effects of Power-Conditioning Systems and Application Loads, IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 5, SEPTEMBER 2004, pp. xxx.

Cité dans :[THESE133] B. BIDOGGIA, Etude et réalisation de nouveaux convertisseurs connectant plusieurs sources d'énergies renouvelables au réseau, These de doctorat, septembre 2005 - aout 2008.
Auteur : Sudip K. Mazumder
Auteur : Kaustuva Acharya
Auteur : Comas Lamar Haynes
Auteur : Robert Williams Jr.
Auteur : Michael R. von Spakovsky
Auteur : Douglas J. Nelson
Auteur : Diego F. Rancruel
Auteur : Joseph Hartvigsen
Auteur : Randy S. Gemmen

Source : IEEE TRANSACTIONS ON POWER ELECTRONICS
Volume : 19
Numéro : 5
Date : SEPTEMBER 2004
Pages : 1263
Lien : private/01331488.pdf - 16 pages, 1932 Ko.

Vers : Bibliographie

Abstract :
We describe methodologies for comprehensive
and reduced-order modeling of solid-oxide-fuel-cell (SOFC)
power-conditioning system (PCS) at the subsystem/component
and system levels to resolve the interactions among SOFC,
balance-of-plant subsystem, and power-electronics subsystem
(PES) and application loads (ALs). Using these models, we analyze
the impacts of electrical-feedback effects (e.g., ripple-current
dynamics and load transients) on the performance and reliability
of the SOFC. Subsequently, we investigate the effects of
harmonics in the current, drawn from the SOFC by a PES, on
the temperature and fuel utilization of the SOFC. We explore
the impacts of inverter space-vector modulation strategies on the
transient response, flow parameters, and current density of the
SOFC during load transients and demonstrate how these two traditionally
known superior modulation/control methodologies may
in fact have a negative effect on the performance and durability
of the SOFC unless carefully implemented. Further, we resolve
the impacts of the current drawn by the PES from the SOFC,
on its microcrack density and electrode/electrolyte degradation.
The comprehensive analytical models and interaction-analysis
methodologies and the results provided in this paper lead to an
improved understanding, and may yield realizations of cost-effective,
reliable, and optimal PESs, in particular, and SOFC PCSs, in general.

Index-Terms : Power-conditioning system (PCS), power-electronics subsystem (PES), solid-oxide-fuel-cell (SOFC).


Bibliographie

TOP

REFERENCES : 26
[1] : A. V. Virkar, J.W. Kim, K. Mehta, and K. Z. Fung. (1997) Low Temperature, high performance, planar solid oxide fuel cells and stacks. [Online] http://www.netl.doe.gov/publications/proceedings/97/97fc/FC6-5.PDF
[2] : X. Huang and K. Reifsnider, "Modeling long-term performance of solid oxide fuel cells: a phenomenological approach," in Proc. 15th Annu. Conf. Fossil Energy Materials, Knoxville, TN, Apr./May 2001.
[3] : Y. C. Hsiao and J. R. Selman, "The degradation of SOFC electrodes," in Proc. Solid State Ionics, vol. 98, June 1997, pp. 33-38.
[4] : R. P. Travis, "Mechanical integrity issues of fuel cells," in Proc. ASME 1st Int. Conf. Fuel Cell Science, Engineering and Technology, Mar. 2003, pp. 89-94.
[5] : A. C. Burt, I. B. Celik, R. S. Gemmen, and A. V. Smirnov, "Influence of radiative heat transfer on variation of cell voltage within a stack,"in Proc. ASME 1st Int. Conf. Fuel Cell Science, Engineering and Technology, Mar. 2003, pp. 217-223.
[6] : J. Qu, A. Fedorov, and C. Haynes. (2003, Aug.) An integrated approach to modeling and mitigating SOFC Failure. Tech. Rep., Nat. Energy Technol. Lab. [Online] http://www.netl.doe.gov/scng/projects/endse/fuelcells/seca/pubs/seca41571Monthly%20Reports%20August%202003.pdf
[7] : E. Achenbach, "Response of a solid oxide fuel cell to load change," J. Power Sources, vol. 57, pp. 105-109, 1995.
[8] : J. Hartvigsen, S. Elangovan, and A. Khandkar, "Selection of SOFC stack operating point for optimal balance of efficiency and power," in Proc. 3rd Eur. Solid-Oxide Fuel Cell Forum, 1998, pp. 517-524.
[9] : C. Haynes, "Simulation of tubular solid oxide fuel cell behavior for integration into gas turbine cycles," Ph.D. dissertation, Georgia Inst. Technol., Atlanta, 1999.
[10] : C. L. Haynes and W. J. Wepfer, "Design for power of a commercialgrade tubular solid oxide fuel cell," J. Energy Conv. Manag., vol. 41, pp. 1123-1139, 2000.
[11] : J. Hartvigsen, "A transient model of solid-oxide fuel cell operation in a high cycle regime of inverter induced current variation," in Proc. 8th Int. Fatigue Conf., vol. 4, Stockholm, Sweden, 2002, pp. 2187-2196.
[12] : R. Gemmen, "Analysis for the effect of inverter ripple current on fuel cell operating condition," J. Fluids Eng., vol. 125, no. 3, pp. 576-585, 2003.
[13] : S. K. Mazumder, R. K. Burra, K. Acharya, M. R. von Spakovsky, D. J. Nelson, D. Rancruel, C. Haynes, and R. Williams, "Development of a comprehensive simulation platform to investigate system interactions among solid-oxide fuel cell, power-conditioning systems, and application loads," in Proc. ASME 1st Int. Conf. Fuel Cell Sci., Eng. Technol., Mar. 2003, pp. 101-110.
[14] : K. Acharya, S. K. Mazumder, R. K. Burra, R. Williams, and C. Haynes, "System-interaction analyses of solid-oxide fuel cell (SOFC) power-conditioning system," in Proc. IEEE Industry ApplicationsSociety Conf., 2003, pp. 2026-2032.
[15] : K. Acharya, S. K. Mazumder, and R. K. Burra, "Solid-oxide fuel cell power-conditioning systems interaction analysis: resolution of the electrical- feedback effects on SOFC performance and durability," in Proc. IEEE Applied Power Electronics Conf., 2004.
[16] : S. K. Mazumder, A. H. Nayfeh, and D. Boroyevich, "Theoretical and experimental investigation of the fast- and slow-scale instabilities of a dc-dc converter," IEEE Trans. Power Electron., vol. 16, pp. 201-216, Mar. 2001.
[17] : R. D. Middlebrook and S. Cuk, "A general unified approach to modeling switching-converter power stages," in Proc. IEEE Power Electronics Specialists Conf., 1977, pp. 521-550.
[18] : , "A general unified approach to modeling switching dc to dc converters in discontinuous conduction mode," in Proc. IEEE Power Electronic Specialists Conf., 1977, pp. 36-57.
[19] : F. C. Lee, Modeling, Analysis, and Design of PWM Converter. Blacksburg, VA: Virginia Power Electronic Center, 1990.
[20] : S. K. Mazumder, A. H. Nayfeh, and D. Boroyevich, "Nonlinear dynamics and stability analysis of parallel dc-dc converters including the effect of saturation," JVC: Nonlinear Dyn. Contr., vol. 9, pp. 775-789, 2001.
[21] : Y. Konishi, Y. L. Feng, and M. Nakaoka, "Three-phase voltage-fed inverter with new conceptual optimum PWM strategy for high-power applications," in Proc. Power Electronics and Variable Speed Drives Conf., 1998, pp. 600-605.
[22] : N. Georgopoulos, M. R. von Spakovsky, and J. R. Munoz, "Application of a decomposition strategy to the optimal synthesis/design and operation of a fuel cell based total energy system for residential applications," in Proc. Int. Mechanical Engineering Congr. Expo. (IMECE’02), New York, NY, 2002.
[23] : S. K. Mazumder, M. R. von Spakovsky, C. Haynes, K. Acharya, R. Burra, D. Rancruel, R. Williams, and D. Nelson, "An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads," Phase-I Topical Rep., U.S. DoE, Cooperative Agreement DE-FC26-02NT41574, Oct. 2002.
[24] : S. K. Mazumder, "Nonlinear analysis and control of standalone, parallel dc-dc, and parallel multiphase PWM converters," Ph.D. dissertation, Virginia Polytech. Inst. State Univ., Blacksburg, 2001.
[25] : J. Holtz, W. Lotzkat, and A. M. Khambadkone, "On continuous control of PWM inverters in the overmodulation range including the six-step mode," IEEE Trans. Power Electron., vol. PE-8, pp. 546-553, Oct. 1993.
[26] : S. K. Mazumder, A. H. Nayfeh, and D. Boroyevich, "Robust control of parallel dc-dc buck converters by combing the concepts of integralvariable- structure- and multiple-sliding-surface control schemes," IEEE Trans. Power Electron., vol. 17, pp. 428-437, May 2002.

  [1] :  [PAP602]  A. V. VIRKAR, J.-W. KIM, K. MEHTA, K.-Z. FUNG, Low temperature, high performance, planar solid oxide fuel cells and stacks, 14 pages.
  [2] :  [PAP603]  A. FEDOROV, C. HAYNES, J. QU, An integrated approach to modeling and mitigating SOFC failure, 34 pages.


Mise à jour le lundi 10 avril 2023 à 18 h 47 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.

Copyright 2023 : TOP

Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.