Article : [ART232]
Titre : Y.S. CHUNG, B. BAIRD, Power capability limits of power MOSFET devices, Microelectronics Reliability, Volume 42 , Issues 2, February 2002, pp. 211-218.
Cité dans :[REVUE294] Elsevier Science, Microelectronics Reliability, Volume 42, Issue 2, Pages 157-305, February 2002. Cité dans : [DIV334] Recherche sur les mots clés power cycling of power device, mai 2002.Auteur : Young S. Chung
Vers : Bibliographie
Adresse : SMARTMOS Technology Center, DigitalDNA Laboratory, Motorola 2200 W. Broadway Rd. M350, Mesa, AZ 85202, USA
Tel. : +1-480-655-4425
Fax. : +1-480-655-4342
Lien : mailto:young.chung@motorola.com
Source : Microelectronics Reliability
Volume : 42
Isues : 2
Date : February 2002
Pages : 211 - 218
DOI : 10.1016/S0026-2714(01)00252-9
PII : S0026-2714(01)00252-9
Lien : private/CHUNG1.pdf - 8 pages, 352 Ko.
Switches :
Puissance :
Logiciel :
Stockage :
Abstract :
With technology progression, power capability becomes a more critical concern in
optimizing power device designs in various smart power IC applications.
Interaction between the electrical and thermal entities is essential in
understanding the power capability limit of the semiconductor devices in both
transient and steady-state operations. This paper reports the fundamental
mechanisms of the electrical¯thermal coupling process during power dissipation
and the characteristics of the power capability limits of the power MOSFET
devices from the scope of intrinsic and extrinsic factors that affect the power
capability. An electrothermally driven snapback breakdown is discussed in detail
to investigate the physical mechanism of the power capability limits of an LDMOS
power transistor. Both simulation and experimental results are in good
agreement, indicating that the electrothermal snapback breakdown would occur at
lower junction temperature than the intrinsic junction temperature.
Article Outline
1. Introduction
2. Device structure and simulation
3. Experimental
4. Discussion
5. Conclusion
Acknowledgements
Bibliographie |
Mise à jour le lundi 10 avril 2023 à 18 h 46 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.
Copyright 2023 : |
Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.