"Average power in digital CMOS circuits using least square estimation.
Copyright - [Précédente] [Première page] [Suivante] - Home

Article : [ART158]

Info : REPONSE 6, le 04/02/2002.

Titre : Average power in digital CMOS circuits using least square estimation.

Cité dans : [DIV313]  Recherche sur l'auteur Narayanaswani RANGANATHAN, février 2002.
Auteur : Murugavel, A.K. (Center for Microelectronics Research Department of Computer Science University of
Auteur : South Florida, Tampa, FL 33620, United States)
Auteur : Ranganathan, N.
Auteur : Chandramouli, R.
Auteur : Chavali, S.

Meeting : 14th International Conference on VLSI Design (VLSI DESIGN 2001).
Location : Bangalore, India

Meeting : 14th International Conference on VLSI Design (VLSI DESIGN 2001).

Info : organization : VLSI Society of India (VSI); DOE, Goverment of India
Location : Bangalore, India

Source : Proceedings of the IEEE International Conference on VLSI Design 2001.p 215-220
CODEN : PIVDEZ
Année : 2001
Meeting_Number : 58190
Document_Type : Conference Article
Treatment_Code : Theoretical; Experimental
Language : English
Stockage :

Abstract :
Power estimation is an important issue in digital VLSI circuit design. The estimation of average power
dissipation of a circuit through exhaustive simulation is impractical due to the large number of primary, inputs
and their combinations. In this paper, two algorithms based on least square estimation are proposed for
determining the average power dissipation in CMOS circuits. Least square estimation converges faster by
attempting to minimize the mean square error value during each iteration. Two approaches namely, the
sequential least square estimation and the recursive least square estimation, are investigated. The proposed
methods are distribution independent in terms of the input samples, unbiased and point estimation based.
Experimental results for the MCNC '91 and the ISCAS '89 bench-mark circuits are presented. While the
sequential least square algorithm performs comparable with the Monte-Carlo method, the recursive least
square method converges up to 12 times faster than the Monte-Carlo technique. 10 Refs.

Accession_Number : 2001(28):2356 COMPENDEX


Mise à jour le lundi 10 avril 2023 à 18 h 46 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.

Copyright 2023 : TOP

Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.