"Fourth-order differential equations satisfied by the generalized co-recursive of all classical orthogonal polynomials. A study of their distribution of zeros", 1995.
Copyright - [Précédente] [Première page] [Suivante] - Home

Article : [ART322]

Info : REPONSE 17, le 27/11/2002.

Titre : Fourth-order differential equations satisfied by the generalized co-recursive of all classical orthogonal polynomials. A study of their distribution of zeros, 1995.

Cité dans : [DIV376]  Recherche sur l'auteur Emmanuel GODOY, septembre 2004.
Auteur : Ronveaux, A. (Math. Phys., Facultes Univ. Notre-Dame de la Paix, Namur, Belgium)
Auteur : Zarzo, A.
Auteur : Godoy, E.

Source : Journal of Computational and Applied Mathematics (30 May 1995) vol.59, no.3, p.295-328. 38 refs.
Price : CCCC 0377-0427/95/$09.50
CODEN : JCAMDI
ISSN : 0377-0427
Document_Type : Journal
Treatment_Code : Practical; Theoretical
Info : Country of Publication : Netherlands
Language : English
Stockage :
Switches :
Power :
Software :

Abstract :
The unique fourth-order differential equation satisfied by the
generalized co-recursive of all classical orthogonal polynomials is given
for any (but fixed) level of recursivity. Up to now, these differential
equations were known only for each classical family separately and also
for a specific recursivity level. Moreover, we use this unique
fourth-order differential equation in order to study the distribution of
zeros of these polynomials via their Newton sum rules (i.e., the sums of
powers of their zeros) which are closely related with the moments of such
distribution. Both results are obtained with the help of two programs
built in Mathematica symbolic language.

Accession_Number : 1995:5060214 INSPEC


Mise à jour le lundi 10 avril 2023 à 18 h 46 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.

Copyright 2023 : TOP

Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.