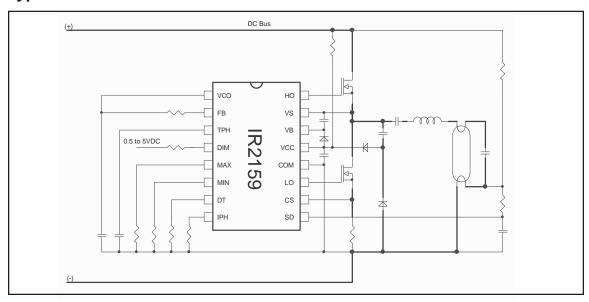
IR2159

DIMMING BALLAST CONTROLLER IC

Features

- Ballast control and half-bridge driver in one IC
- Transformerless lamp power sensing
- Closed-loop lamp power control
- Closed loop preheat and ignition current control
- Programmable preheat time
- Programmable preheat current
- Programmable ignition-to-dim time
- 0.5 to 5VDC or 0 to 5VDC dimming control input
- Min and max lamp power adjustments
- Programmable deadtime
- Internal current sense blanking
- Full lamp fualt protection
- Automatic restart
- Micro-power startup
- Zener clamped Vcc
- Over-temperature protection
- 16-pin DIP and SOIC package types


Description

The IR2159 is a complete dimming ballast controller and 600V half-bridge driver all in one IC. The architecture includes phase control for transformerless lamp power sensing and regulation which minimizes changes needed to adapt non-dimming ballast for dimming. Externally programmable features such as peheat time and curent, ignition-to-dim time, and a complete dimming interface with minimum and maximum settings provide a high degree of flexibility for the ballast design engineer. Protection from failure of a lamp to strike, filament failures, thermal overload, or lamp failure during normal operation, as well as an automatic restart function, have been included in a design. The heart of this control IC is a voltage controlled oscillator with externally programmable deadtime. The IR2159 is available in both 16 pin DIP and 16 pin narrow body SOIC packages.

Packages

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM, all currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
V _B	High side floating supply voltage	-0.3	625	
Vs	High side floating supply offset voltage	V _B - 25	V _B + 25	V
V _{HO}	High side floating output voltage	V _S - 0.3	V _B + 0.3	T
V_{LO}	Low side output voltage	-0.3	V _{CC} + 0.3	
I _{OMAX}	Maximum allowable output current (either output) -500 due to external power transistor miller effect		500	mA
V _V CO	Voltage controlled oscillator input voltage	-0.3	5.0	V
ITPH	TPH current	-5	5	mA
V _{IPH}	IPH voltage	0.3	5.5	
V _{DIM}	Dimming control pin input voltage	0.3	5.5	
V _{MAX}	Maximum lamp power setting pin input voltage	0.3	5.5	V
V _{MIN}	Minimum lamp power setting pin input voltage	-0.3	5.5	
V _{CS}	Current sense input voltage	-0.3	5.5	
I _{SD}	Shutdown pin current	-5	5	
lcc	Supply current (note 1)		25	mA
dV/dt	Allowable offset voltage slew rate	-50	50	V/ns
PD	Package power dissipation @ T _A ≤ +25°C	_	TBD	W
Rth _{JA}	Thermal resistance, junction to ambient	_	TBD	°C/W
TJ	Junction temperature	-55	150	
TS	Storage temperature	-55	150	°C
TL	Lead temperature (soldering, 10 seconds)		300]

Note 1: This IC contains a zener clamp structure between the chip V_{CC} and COM which has a nominal breakdown voltage of 15.6V. Please note that this supply pin should not be driven by a DC, low impedance power source greater than the diode clamp voltage (V_{CLAMP}) as specified in the Electrical Characteristics section.

Recommended Operating Conditions

For proper operation the device should be used within the recommended conditions.

Symbol	Definition	Min.	Max.	Units	
V _{BS}	High side floating supply voltage	V _{CC} - 0.7	VCLAMP		
Vs	Steady state high side floating supply offset voltage		600	V	
Vcc	Supply voltage	V _{CCUV+}	VCLAMP		
Icc	Supply current	note 2	10	mA	
V _V CO	V _{CO} pin voltage	1	5		
V _{DIM}	Dim pin voltage	0	5	V	
V _{MAX}	MAX pin current (note 3)	-750	0	μΑ	
V _{MIN}	MIN pin current	1	3	V	
R _{DT}	Deadtime resistance	20.0	40.0	kΩ	
I _{SD}	Shutdown lead current	-1	1	mA	
ICS	Current sense lead current	-1	1	IIIA	
TJ	Junction temperature	-40	125	°C	

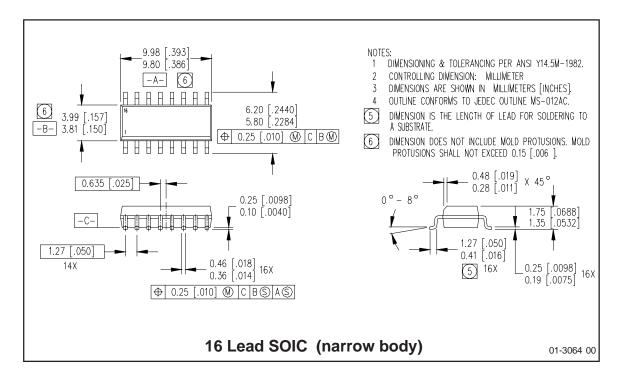
Electrical Characteristics

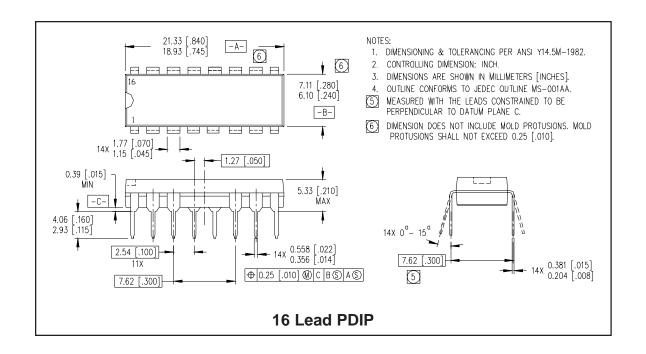
 $V_{CC} = V_{BS} = V_{BIAS} = 15 \text{V} + \text{J} - 0.25 \text{V}, \ V_{CS} = 0.5 \text{V}, \ V_{SD} = 0.0 \text{V}, \ R_{DT} = 40 \text{k}, \ C_{VCO} = 10 \ \text{nF}, \ V_{DIM} = 0.0 \text{V}, \ R_{MAX} = 33 \text{k}, \ R_{MIN} = 56 \text{k}, \ V_{TPH} = 0.0 \text{V}, \ C_L = 1000 \text{pF}, \ T_A = 25 \text{°C} \ \text{unless otherwise specified}.$

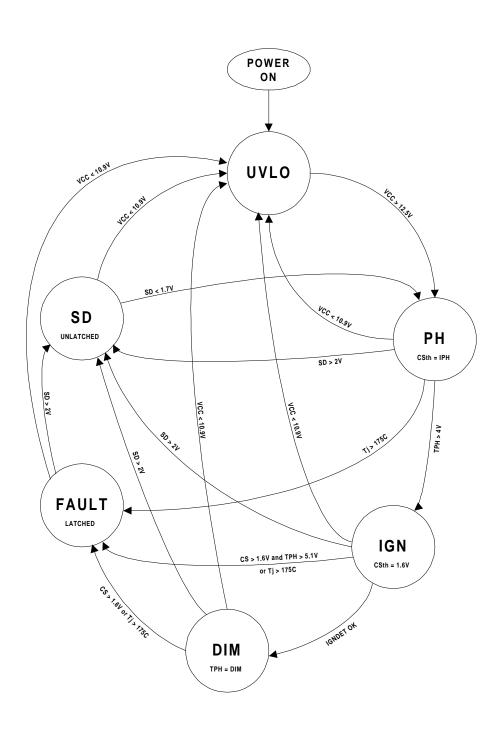
Supply Characteristics								
Symbol Definition		Min.	Тур.	Max.	Units	Test Conditions		
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	_	12.5	_	V			
Vcchys	V _{CC} supply undervoltage lockout hysteresis	_	1.6	_	1			
IQCCUV	UVLO mode quiescent current	_	150	_		VCC < VCCUV-		
IQCCFLT	Fault-mode quiescent current	_	200	_	μΑ	SD=5V, CS=2V, or Tj > TsD		
IQCC	Quiescent V _{CC} supply current	_	TBD	_				
IQCC50K	V _{CC} supply current, f= 50kHz	_	4.5	_	mA			
VCLAMP	V _{CC} zener clamp voltage	_	15.6	_	V	Icc = 10mA		

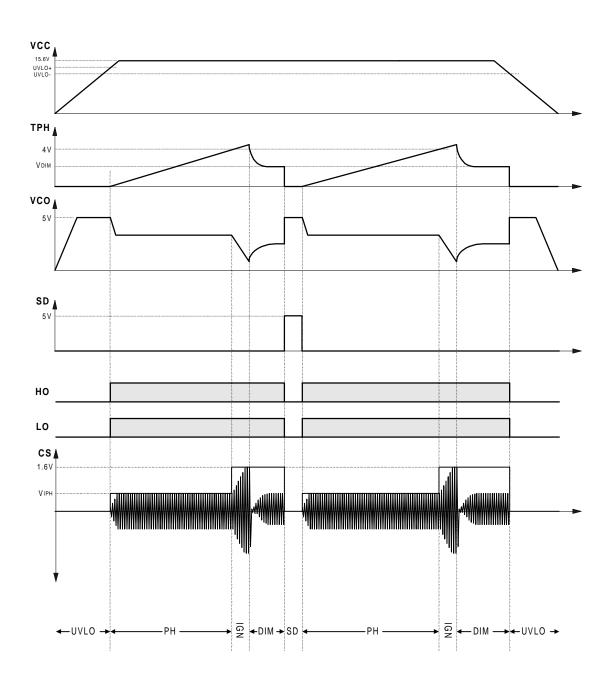
Note 2: Enough current should be supplied into the VCC lead to keep the internal 15.6V zener clamp diode on this lead regulating its voltage.

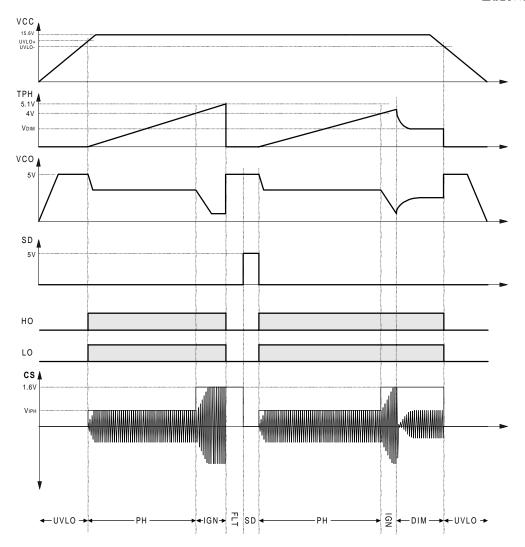
Note 3: The MAX lead is a voltage-controlled current source. For optimum dim interface current miror performance, this current should be kept between 0 and 750μA.


Floating Supply Characteristics									
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions			
I _{QBS0}	Quiescent V _{BS} supply current	_	0	_	μА	V _{HO} = V _S			
IQBS1	Quiescent V _{BS} supply current	_	30	_	μΛ	V _{HO} = V _B			
V _{BSMIN}	Minimum required VBS voltage for proper HO functionality	_	4	5	V				
I _{LK}	Offset supply leakage current	_	_	50	μΑ	$V_B = V_S = 600V$			
Oscillat	or I/O Characteristics								
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions			
f _{VCO}	Voltage controlled oscillator frequency	_	20	_	kHz	V _{VCO} =1V			
		_	100	_	KIIZ	V _{VCO} =5V			
df/dVcc	Oscillator frequency voltage stability	_	TBD	_	%	V _{VCO} = TBD			
						V _{CCUV} + < V _{CC} < 15V			
df/dT	Oscillator frequency temperature stability	_	TBD	_	%	V _{VCO} = TBD			
						-40°C < Tj < 125°C			
d	Gate drive outputs duty cycle	_	50	_	%	V _{VCO} = TBD			
VVCOFLT	Fault-mode VCO pin voltage (UVLO,	-	5		V				
	shutdown, over-current/temp.)								
IVCOPH	Preheat mode VCO pin discharge current		1.0		μΑ	VTPH < 4V			
Ivcoig	Ignition mode VCO pin discharge current		1.0		μΑ	4V < VTPH < 5V			
IVCOPK	Peak current control VCO pin charging		60.0		μΑ	VCS > VCSTH			
	current								
IVCODIM	Dim mode VCO pin discharge current		16.0		μΑ				
tdlo	LO output deadtime	_	2.0	_	μs	R _{DT} = 40K			
toho	HO output deadtime	_	2.0	_	<u> </u>				
dtd/dVcc	Deadtime voltage stability		TBD	_	%	V _{CCUV} + < V _{CC} < 15V			
dtd/dT	Deadtime temperature stability		TBD		%	$-40^{\circ}\text{C} < \text{Tj} < 125^{\circ}\text{C}$			
Gate D	river Output Characteristics								
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions			
VOL	Low-Level Output Voltage			100	mV				
VOH	High-Level Output Voltage	<u> </u>	_	100	mV	VBIAS - VO			
tr	Turn-On Rise Time	_	_	150	ns				
tf	Turn-Off Fall Time	<u> </u>	-	100	ns				


Preheat Characteristics									
Symbol	I Definition		Тур.	Max.	Units	Test Conditions			
ITPH	TPH pin charging current		1.0		μА	ITPH = 0.04/RDT			
VTPHIGN	TPH pin ignition mode threshold voltage		4.0		V				
VTPHCLMP	TPH pin clamp voltage		7.6		V				
IIPH	IPH pin DC source current		25.0		μΑ	IIPH = 1/RDT			
VCSTH	Peak preheat current regulation threshold (Programmable)	0.7		V		VCSTH = (IIPH) x (RIPH)			
Ignition	Characteristics			_					
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions			
V _{CSTH}	Peak ignition current regulation threshold	_	1.6	_	V	4V < V _{TPH} < 5V			
Protect	ion Characteristics								
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions			
V _{SDTH+}	Rising shutdown pin threshold voltage	_	3.0	T —	V				
VSDHYS	SD threshold hysteresis	_	150	_	mV				
V _{SDCLAMP}	SD pin clamp voltage	_	7.6	_					
Vcsth	Peak over-current latch threshold voltage	_	1.6	_	V				
T _{SD} *	Thermal shutdown junction temperature	–	175	_	°C				
Phase	Control								
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions			
Vcsthzx	Zero-crossing thresholdvoltage	_	0.0	_	V				
R _{DSFB}	FB pin on resistance (open drain)	_	125	_	Ω				
Dim Int	erface								
Symbol Definition		Min.	Тур.	Max.	Units	Test Conditions			
V _{DIMOFF}	DIM pin offset voltage	_	0.5	_					
V_{DIM}	DIM input voltage range	0.0	_	5.0					
V _{MIN}	DIM reference voltage range (MIN pin)	1.0	_	3.0					


When the IC senses an overtemperature condition (Tj > 125°C), the chip is latched off. In order to reset this Latch, the supply to the IC must be cycled below the falling undervoltage lockout threshold, $V_{CC_{-}}$, or the SD pin must be cycled.


Lead Assignments & Definitions


		 						
Lead #	Symbol	Description		Pin	Assig	nme	ents	
1	Vco	Voltage controlled oscillator input	Ī					
2	FB	Feedback gain	Ī			,		
3	T _{PH}	Preheat timing input	VC0	1	o <u> </u>		16	НО
4	DIM	0.5 to 5VDC dimming control input						\/O
5	MAX	Maximum lamp power setting	† FB	2			15	VS
6	MIN	Minimum lamp power setting	I трн	3	_	_	14	VB
7	DT	Deadtime programming	Ī	٣	ス	J	٣	,,,
8	IPH	Peak preheat current reference	DIM	4	N)	13	VCC
9	SD	Shutdown input	Ī	႕				
10	CS	Current sensing input	MAX	5			12	COM
11	LO	Low-side gate driver output	I MIN	6	C	7	111	LO
12	COM	IC Power & signal ground	[""" \	٣	Œ	`	Ë	
13	Vcc	Logic & low-side gate driver supply	_ DT	7	a		10	CS
14	V _B	High-side gate driver floating supply	I					
15	VS	High voltage floating return	I IPH	8			9	SD
16	НО	High-side gate driver output						

International Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 322 3331

IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T 3Z2 Tel: (905) 453-2200

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171 Tel: 81 3 3983 0086

IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: 65 838 4630

IR TAIWAN: 16 Fl. Suite D..207, Sec.2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936

http://www.irf.com/

Data and specifications subject to change without notice. 3/1/99