

Developing an SRM
Drive System Using the
TMS320F240

APPLICATION REPORT: SPRA420

Michael T. DiRenzo
 DSPS R&D Center

Digital Signal Processing Solutions
 March 1998

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract7
Product Support..8

Related Documentation ...8
World Wide Web ...8
Email ...8

Introduction ... 9
Motor Characteristics..11

Torque-Speed Characteristics ...12
Electro-Magnetic Equations...13
General Torque Equation ..13
Simplified Torque Equation..16

Control .. .18
Example – SRM Drive with Position Feedback ...23

Hardware Description ..23
SRM Characteristics..23
Control Hardware ..23
Position Sensor ...23
Power Electronics Hardware ...26

Software Description ...28
Program Structure ...29
Initialization Routines ..32
Current Controller..33
Position Estimation..37
Velocity Estimation ..38
Commutation...41
Velocity Controller ...44

Position Sensorless Control...48
Overview of Method ..49

Example – SRM Drive without Position Sensor ..52
Hardware Description ..52
Software Description ...52

Program Structure ...53
Initialization Routines ..56
Training and Calibration ..56
Flux Estimation..60
Current Controller..63
Commutation...64
Velocity Estimation ..66
Velocity Controller ...69

References...73
Appendix A. Software Listings for a TMS320F240-Based SRM Drive
With Position Sensor ..74
Appendix B. Software Listings for a TMS320F240-Based SRM Drive
Without Position Sensor...102

Figures
Figure 1. Various SRM Geometries..11
Figure 2. SRM Torque-Speed Characteristics ..12
Figure 3. Graphical Interpretation of Magnetic Field Energy...15
Figure 4. Graphical Interpretation of Magnetic Field Co-Energy15
Figure 5. Basic Operation of a Current Controlled SRM – Motoring at Low-Speed.........18
Figure 6. Commutation of a 3-Phase SRM ...19
Figure 7. Single-Pulse Mode – Motoring, High Speed ..21
Figure 8. SRM Shaft Position Sensor ...24
Figure 9. Opto-Coupler Output Signals vs. Rotor Angle ...24
Figure 10. Opto-Coupler Connections to the TMS320F240 EVM25
Figure 11. Two-Switch Per Phase Inverter ...26
Figure 12. Schematic Diagram of SRM Inverter Using the IR2110 and Connections to

the EVM ..27
Figure 13. Block Diagram of the SRM Controller. ..28
Figure 14. TMS320F240 SRM Control Program Structure ...29
Figure 15. Processor Timeline Showing Typical Loading and Execution of SRM Control

Algorithms ...30
Figure 16. Initialization Flowchart ...32
Figure 17. Approximate SRM Current Loop Model. ..34
Figure 18. Frequency Response Plots for the SRM Current Loop at the Unaligned

Position (Squares) and at the Aligned Position (Circles)..................................35
Figure 19. State Transition Diagram for the SRM Position Pickoff37
Figure 20. Simplified Block Diagram of SRM Velocity Loop Using PI Control45
Figure 21. Open-Loop Frequency Response of the SRM Velocity Loop at Several Motor

Speeds, for a = 0.73 rad/s..46
Figure 22. SRM Magnetization Curves...48
Figure 23. Calibration Sequence for SRM at Aligned Position ..49
Figure 24. Block Diagram of the SRM Sensorless Controller..52
Figure 25. TMS320F240 Position Sensorless SRM Control Program Structure................53
Figure 26. Processor Timeline Showing Loading With Training and Calibration Routine

Active ..54
Figure 27. Processor Timeline During Normal SRM Operation...55
Figure 28. SRM Training Algorithm Flowchart ..57
Figure 29. SRM Position Sensorless Commutation Algorithm Flowchart65
Figure 30. Simplified Block Diagram of the SRM Velocity Loop Using PI Control69
Figure 31. Open-Loop Frequency Response of SRM Velocity Loop at Several Motor

Speeds, for a = 0.293 rad/s..70

Tables
Table 1. SRM Parameters...23
Table 2. Benchmark Data for the Various SRM Drive Software Modules31
Table 3. Benchmark Data for the Various Position Sensorless SRM Drive Software

Modules ..56

Developing an SRM Drive System Using the TMS320F240 7

Developing an SRM Drive System
Using the TMS320F240

Abstract

This report describes the basic operation of switched reluctance
motors (SRMs) and demonstrates how TMS320F240 DSP-based
SRM drive from Texas Instruments™ can be used to achieve a
wide variety of control objectives.

The first part of the report offers a detailed review of the operation
and characteristics of SRMs. The advantages and disadvantages
of this type of motor are cited.

The second part of the report provides examples and strategies
for overcoming the limitations cited for SRMs. The examples have
complete hardware and software details for developing an SRM
drive system using the TMS320F240. Both conventional and
position sensorless operations are described, along with the
theoretical basis for designing the various control algorithms. The
examples can be used as baseline designs, which can be easily
modified to accommodate a specific application.

SPRA420

8 Developing an SRM Drive System Using the TMS320F240

Product Support

Related Documentation

The following list specifies titles and literature numbers of
corresponding TI documentation.

❑ TMS320C24x DSP Controllers Reference Set, Volume 1:
CPU, System, and Instruction Set, Literature number
SPRU160B

❑ TMS320C24x DSP Controllers Reference Set, Volume 2:
Peripheral Library and Specific Devices, Literature number
SPRU161B

❑ TMS320C2xx User's Guide, Literature number SPRU127B

World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

Email

For technical issues or clarification on switching products, please
send a detailed email to dsph@ti.com. Questions receive prompt
attention and are usually answered within one business day.

SPRA420

Developing an SRM Drive System Using the TMS320F240 9

Introduction

Electric machines can be broadly classified into two categories on
the basis of how they produce torque − electromagnetically or by
variable reluctance.

In the first category, motion is produced by the interaction of two
magnetic fields, one generated by the stator and the other by the
rotor. Two magnetic fields, mutually coupled, produce an
electromagnetic torque tending to bring the fields into alignment.
The same phenomenon causes opposite poles of bar magnets to
attract and like poles to repel. The vast majority of motors in
commercial use today operate on this principle. These motors,
which include DC and induction motors, are differentiated based
on their geometries and how the magnetic fields are generated.
Some of the familiar ways of generating these fields are through
energized windings, with permanent magnets, and through
induced electrical currents.

In the second category, motion is produced as a result of the
variable reluctance in the air gap between the rotor and the stator.
When a stator winding is energized, producing a single magnetic
field, reluctance torque is produced by the tendency of the rotor to
move to its minimum reluctance position. This phenomenon is
analogous to the force that attracts iron or steel to permanent
magnets. In those cases, reluctance is minimized when the
magnet and metal come into physical contact. As far as motors
that operate on this principle, the switched reluctance motor
(SRM) falls into this class of machines.

SPRA420

10 Developing an SRM Drive System Using the TMS320F240

In construction, the SRM is the simplest of all electrical machines.
Only the stator has windings. The rotor contains no conductors or
permanent magnets. It consists simply of steel laminations
stacked onto a shaft. It is because of this simple mechanical
construction that SRMs carry the promise of low cost, which in
turn has motivated a large amount of research on SRMs in the last
decade. The mechanical simplicity of the device, however, comes
with some limitations. Like the brushless DC motor, SRMs can not
run directly from a DC bus or an AC line, but must always be
electronically commutated. Also, the saliency of the stator and
rotor, necessary for the machine to produce reluctance torque,
causes strong non-linear magnetic characteristics, complicating
the analysis and control of the SRM. Not surprisingly, industry
acceptance of SRMs has been slow. This is due to a combination
of perceived difficulties with the SRM, the lack of commercially
available electronics with which to operate them, and the
entrenchment of traditional AC and DC machines in the
marketplace. SRMs do, however, offer some advantages along
with potential low cost. For example, they can be very reliable
machines since each phase of the SRM is largely independent
physically, magnetically, and electrically from the other motor
phases. Also, because of the lack of conductors or magnets on
the rotor, very high speeds can be achieved, relative to
comparable motors.

Disadvantages often cited for the SRM; that they are difficult to
control, that they require a shaft position sensor to operate, they
tend to be noisy, and they have more torque ripple than other
types of motors; have generally been overcome through a better
understanding of SRM mechanical design and the development of
algorithms that can compensate for these problems.

SPRA420

Developing an SRM Drive System Using the TMS320F240 11

Motor Characteristics

The basic operating principle of the SRM is quite simple; as
current is passed through one of the stator windings, torque is
generated by the tendency of the rotor to align with the excited
stator pole. The direction of torque generated is a function of the
rotor position with respect to the energized phase, and is
independent of the direction of current flow through the phase
winding. Continuous torque can be produced by intelligently
synchronizing each phase’s excitation with the rotor position.

By varying the number of phases, the number of stator poles, and
the number of rotor poles, many different SRM geometries can be
realized. A few examples are shown in Figure 1.

Figure 1. Various SRM Geometries

(a) (b)

(c) (d)

(a) 2-phase, 4 rotor poles/2 stator poles, (b) 4-phase, 8/6, (c) 3-
phase, 6/4, (d) 5-phase, 10/8.

Note that although true of these examples, the number of phases
is not necessarily equal to half the number of rotor poles.

SPRA420

12 Developing an SRM Drive System Using the TMS320F240

Generally, increasing the number of SRM phases reduces the
torque ripple, but at the expense of requiring more electronics with
which to operate the SRM. At least two phases are required to
guarantee starting, and at least three phases are required to
insure the starting direction. The number of rotor poles and stator
poles must also differ to insure starting.

Torque-Speed Characteristics

The torque-speed operating point of an SRM is essentially
programmable, and determined almost entirely by the control. This
is one of the features that makes the SRM an attractive solution.
The envelope of operating possibilities, of course, is limited by
physical constraints such as the supply voltage and the allowable
temperature rise of the motor under increasing load. In general,
this envelope is described by Figure 2.

Figure 2. SRM Torque-Speed Characteristics

speed

to
rq

u
e

current
limit

base speed

constant power,

ω
1∝T

2

1

ω
∝T

Like other motors, torque is limited by maximum allowed current,
and speed by the available bus voltage. With increasing shaft
speed, a current limit region persists until the rotor reaches a
speed where the back-EMF of the motor is such that, given the
DC bus voltage limitation we can get no more current in the
winding—thus no more torque from the motor. At this point, called
the base speed, and beyond, the shaft output power remains
constant, and at it's maximum. At still higher speeds, the back-
EMF increases and the shaft output power begins to drop. This
region is characterized by the product of torque and the square of
speed remaining constant.

SPRA420

Developing an SRM Drive System Using the TMS320F240 13

Electro-Magnetic Equations

Although SR motor operation appears simple, an accurate
analysis of the motor’s behavior requires a formal, and relatively
complex, mathematical approach. The instantaneous voltage
across the terminals of a single phase of an SR motor winding is
related to the flux linked in the winding by Faraday’s law,

dt

d
iRv m

φ+= (1)

where, v is the terminal voltage, i is the phase current, Rm is the
motor resistance, and φ is the flux linked by the winding. Because
of the double salient construction of the SR motor (both the rotor
and the stator have salient poles) and because of magnetic
saturation effects, in general, the flux linked in an SRM phase
varies as a function of rotor position, θ, and the motor current.
Thus (1) can be expanded as

td

d

dt

id

i
iRv m

θ
θ
φφ

∂
∂+

∂
∂+= (2)

where,
i∂

∂φ is defined as L(θ, i), the instantaneous inductance,
θ
φ

∂
∂

is Kb(θ, i), the instantaneous back EMF.

General Torque Equation

Equation (2) governs the transfer of electrical energy to the SRM’s
magnetic field. In this section, the equations which describe the
conversion of the field’s energy into mechanical energy are
developed. Multiplying each side of (1) by the electrical current, i,
gives an expression for the instantaneous power in an SRM,

dt

d
iRivi m

φ+= 2
(3)

The left-hand side of (3) represents the instantaneous electrical
power delivered to the SRM. The first term in the right-hand side
(RHS) of (3) represents the ohmic losses in the SRM winding. If
power is to be conserved, then the second term in the RHS of (3)
must represent the sum of the mechanical power output of the
SRM and any power stored in the magnetic field. Thus,

SPRA420

14 Developing an SRM Drive System Using the TMS320F240

dt

dW

dt

dW

dt

d
i fm +=φ

(4)

where,
dt

dWm is the instantaneous mechanical power, and
dt

dWf is

the instantaneous power, which is stored in the magnetic field.
Because power, by it’s own definition, is the time rate of change of
energy, Wm is the mechanical energy and Wf is the magnetic field
energy.

It is well known that mechanical power can be written as the
product of torque and speed,

dt

d
TT

dt

dWm θω == (5)

where, T is torque, and
dt

dθω = is the rotational velocity of the

shaft.

Substitution of (5) into (4) gives,

dt

dW

dt

d
T

dt

d
i

f+= θφ
(6)

and solving (6) for torque yields the equation,

θ
φθ

θ
φφθφθ

d

dW

d

d
iT f),(

),(),(−= (7)

and for constant flux, (7) simplifies to,

θ∂
∂

−= fW
T (8)

Since it is often desirable to express torque in terms of current
rather than flux, it is common to express torque in terms of co-
energy, Wc, instead of energy. To introduce the concept of co-
energy, first consider a graphical interpretation of field energy. For

constant shaft angle, 0=
dt

dθ , integration of (6) shows that the

magnetic field energy can be given by the equation,

∫=
φ

φφθ
0

),(diWf (9)

SPRA420

Developing an SRM Drive System Using the TMS320F240 15

and graphically by the shaded area in Figure 3.

Figure 3. Graphical Interpretation of Magnetic Field Energy

F
lu

x
L

in
ka

g
e

Current
i

φ

i=i (θ, φ)

Wf , stored field energy

for angle, θ,
magnetization curve

defines current as
 a function of flux

Now, consider Figure 4.

Figure 4. Graphical Interpretation of Magnetic Field Co-Energy

F
lu

x
L

in
ka

g
e

Current
i

φ

φ = φ(θ, i)

Wc , stored field co-energy

for angle, θ,
magnetization curve

defines flux as a
 function of current

For the fixed angle, θ, let the magnetization curve define flux as a
function of current, instead of current defined as a function of flux.
The shaded area below the curve,

∫=
i

c diiW

0

),(θφ (10)

SPRA420

16 Developing an SRM Drive System Using the TMS320F240

is defined as the magnetic field co-energy.

From Figure 3 and Figure 4, we see that the area defining the field
energy and co-energy can be described by the relation,

φiWW fc =+ (11)

Differentiating both sides of (11) yields

φφ iddidWdW fc +=+ (12)

Solving for the differential field energy in (12) and substituting
back into (7) gives,

()
θ

θφφφ
d

idWiddiid
T c),(−+−

= (13)

For simplification, the general torque equation, (13), is usually
simplified for values of constant current. The differential co-energy
can be written in terms of its partial derivatives as,

di
i

W
d

W
idW cc

c ∂
∂+

∂
∂= θ

θ
θ),((14)

From (13) and (14), it is fairly easy to show that under constant
current,

constant , i
W

T c

θ∂
∂

= (15)

Simplified Torque Equation

Often, SRM analysis proceeds under the assumption that,
magnetically, the motor remains unsaturated during operation.
This assumption can be useful for “first cut” control designs or
performance predictions. When magnetic saturation is neglected,
the relationship from flux to current is given by,

iL ⋅=)(θφ (16)

and the motor inductance varies only as a function of rotor angle.
Substituting (16) into (10) and evaluating the integral yields,

SPRA420

Developing an SRM Drive System Using the TMS320F240 17

)(
2

2

θL
i

Wc = (17)

and then substituting (17) into (15) gives the familiar simplified
relationship for SRM torque,

θd

dLi
T

2

2

= (18)

SPRA420

18 Developing an SRM Drive System Using the TMS320F240

Control

SRM drives are controlled by synchronizing the energization of the
motor phases with the rotor position. Figure 5 illustrates the basic
strategy.

Figure 5. Basic Operation of a Current Controlled SRM – Motoring at Low-Speed

idealized
inductance

ideal
current

voltage

current

θ

As (18) suggests, positive (or motoring) torque is produced when
the motor inductance is rising as the shaft angle is increasing,

0>
θd

dL
.

Thus, the desired operation is to have current in the SRM winding
during this period of time. Similarly, a negative (or braking) torque
is produced by supplying the SRM winding with current while

0<
θd

dL
.

SPRA420

Developing an SRM Drive System Using the TMS320F240 19

The exact choice of the turn-on and turn-off angles and the
magnitude of the phase current, determine the ultimate
performance of the SRM. The design of commutation angles,
sometimes called firing angles, usually involves the resolution of
two conflicting concerns − maximizing the torque output of the
motor or maximizing the efficiency of the motor. In general,
efficiency is optimized by minimizing the dwell angle (the dwell
angle is the angle traversed while the phase conducts), and
maximum torque is achieved by maximizing the dwell angle to
take advantage of all potential torque output from a given phase.

A simple and effective commutation scheme is depicted in Figure
6.

Figure 6. Commutation of a 3-Phase SRM

T
o

rq
u

e

A B CC

0 60 120 180 240 300 360

C
u

rr
e

n
t

phase A

phase B

phase C

Rotor Electrical Angle (deg)

In the top plot of Figure 6, the dashed line shows the torque that
would be generated by phase A, should constant current flow
through the phase winding during an entire electrical cycle of the
SRM. With the idealized current waveforms of the figure, the
resulting net torque from the motor is shown by the solid line. The
turn-on and turn-off angles coincide with the region where
maximum torque is obtained for the given amount of phase
current.

SPRA420

20 Developing an SRM Drive System Using the TMS320F240

This commutation sequence tends to optimize efficiency. Here, a
dwell angle of 120 electrical degrees is used, which is the
minimum dwell angle that can be used for a three-phase SRM,
without regions of zero torque.

Of interest to note from Figure 6 is that constant current results in
non-constant torque. As might be expected, schemes have been
proposed by Husain and Ehsani1, Ilic-Spong, et al2, and Kjaer, et
al3 that attempt to linearize SRM output torque by shaping and
controlling the phase currents through some non-linear function
that depends upon the motor characteristics. This application,
although not covered in this report, is well suited for DSP
implementation.

Figure 6 illustrates the effect that the choice of commutation
angles can have upon the SRM performance. Equally important is
the magnitude of the current that flows in the winding. Commonly,
the phase current is sensed and controlled in a closed-loop
manner, and as seen in the voltage curve of Figure 5, the control
is typically implemented using PWM techniques.

SRM control is often described in terms of "low-speed" and "high-
speed" regimes. Low-speed operation is typically characterized by
the ability to arbitrarily control the current to any desired value.
Figure 5 illustrates waveforms typical of low-speed SRM
operation. As the motor’s speed increases, it becomes
increasingly difficult to regulate the current because of a
combination of the back EMF effects and a reduced amount of
time for the commutation interval. Eventually a speed is reached
where the phase conducts (remains on) during the entire
commutation interval. This mode of operation, depicted by Figure
7, is called the single-pulse mode.

1 I. Husain and M. Ehsani, " Torque Ripple Minimization in Switched Reluctance Motor Drives by
PWM Current Control," Proc. APEC’94, 1994, pp. 72-77.
2 M. Ilic-Spong, T. J. E. Miller, S. R. MacMinn, and J. S. Thorp, “Instantaneous Torque Control of
Electric Motor Drives,” IEEE Trans. Power Electronics, Vol. 2, pp. 55-61, Jan. 1987.
3 P. C. Kjaer, J. Gribble, and T. J. E. Miller, “High-grade Control of Switched Reluctance
Machines,” IEEE Trans. Industry Electronics, Vol. 33, pp. 1585-1593, Nov. 1997.

SPRA420

Developing an SRM Drive System Using the TMS320F240 21

Figure 7. Single-Pulse Mode – Motoring, High Speed

idealized
inductance

voltage

current

When this occurs, the motor speed can be increased by
increasing the conduction period (a greater dwell angle) or by
advancing the firing angles, or by a combination of both. By
adjusting the turn-on and turn-off angles so that the phase
commutation begins sooner, we gain the advantage of producing
current in the winding while the inductance is low, and also of
having additional time to reduce the current in the winding before
the rotor reaches the negative torque region. Control of the firing
angles can be accomplished a number of ways, and is based on
the type of position feedback available and the optimization goal
of the control, as discussed in publications by Becerra, et al,4 and
Miller.5 When position information is more precisely known, a
more sophisticated approach can be used. One approach is to
continuously vary the turn-on angle with a fixed dwell.

Near turn-on, (2) can be approximated as

dt

di
L

dt

di

i
v u ⋅=

∂
∂= φ

(19)

Multiplying each side of (19) by the differential, dθ, and solving for
dθ, gives,

dt

d

v

diL
d u θθ ⋅

⋅
= (20)

4 R. Becerra, M. Ehsani, and T. J. E. Miller, “Commutation of SR Motors,” IEEE Trans. Power
Electronics, Vol. 8, July 1993, pp. 257-262.
5 T. J. E. Miller, “Switched Reluctance Motors and Their Control,” Magna Physics Publishing,
Hillsboro, OH, and Oxford, 1993.

SPRA420

22 Developing an SRM Drive System Using the TMS320F240

and using first order approximations yields an equation for
calculating advance angle,

ωθ ⋅
⋅

=
bus

cmdu
adv

V

iL
(21)

where icmd is the desired phase current and Vbus is the DC bus
voltage.

SPRA420

Developing an SRM Drive System Using the TMS320F240 23

Example – SRM Drive with Position Feedback

This section describes an example application of an SRM drive
with position feedback. The SRM is a 3-phase 12/8 machine that
is speed and current controlled.

Hardware Description

SRM Characteristics

The characteristics of the SRM used in this application report are
given by Table 1.

Table 1. SRM Parameters

number of phases, m 3
number of stator poles, NS 12
number of rotor poles, NR 8
nominal phase resistance, Rm 8.1 Ω
nominal aligned inductance, La 240 mH
nominal unaligned inductance, Lu 60 mH
phase current (max) 4 A
DC bus voltage, Vbus 170 VDC

Control Hardware

The control hardware used in this application report is the
TMS320F240 evaluation module (EVM).

Position Sensor

Shaft position information is provided using an 8-slot, slotted disk
connected to the rotor shaft and three opto-couplers mounted to
the stator housing as shown in Figure 8.

SPRA420

24 Developing an SRM Drive System Using the TMS320F240

Figure 8. SRM Shaft Position Sensor

SRM Housing

Opto-couplers

Slotted disk

Rotor
shaft

The opto-couplers are nominally located 30° apart from each other
along the circumference of the disk. This configuration and
geometry produces the output waveforms shown in Figure 9.

Figure 9. Opto-Coupler Output Signals vs. Rotor Angle

0 45(mechanical angle) 15 30

0 360/0120 240(electrical angle)

Opto #1

Opto #2

Opto #3

This configuration generates an opto-coupler edge for every 7.5°
of mechanical rotation. For every 45° of mechanical rotation the
signal pattern repeats, corresponding to one electrical cycle of the
SRM, of which there are 8 per shaft revolution.

SPRA420

Developing an SRM Drive System Using the TMS320F240 25

In this report both mechanical angle and electrical angle are
referenced. Mechanical angle is useful when considering velocity
control of the SRM, and electrical angle is convenient when
considering commutation. Electrical angle is related to mechanical
angle by the number of rotor poles, NR. In Figure 9, the angles are
arbitrarily defined with respect to some convenient point. Here,
180° electrical is defined as the aligned position for phase A of the
motor. This is easily verified by energizing phase A and then
monitoring the opto-coupler output waveforms on an oscilloscope
to observe that the rotor is at the point where opto-coupler #3
switches state, while opto-coupler #2 is low and opto-coupler #1 is
high. For a 3-phase SRM, phases B and C are related to the
position of phase A by adding 120 and 240 electrical degrees,
respectively.

A fundamentally identical position sensor can be implemented by
replacing the opto-couplers with Hall-effect sensors and
embedding permanent magnets within the teeth of the slotted
disk. The opto-couplers are connected to the F240 EVM as shown
in Figure 10.

Figure 10. Opto-Coupler Connections to the TMS320F240 EVM

opto-coupler #x

CAPx

IOPx

+5 V

x=1,2,3

Here, each opto-coupler output is connected to both a capture
input and a digital I/O input. As will be explained in further detail
below, the capture inputs are used once the motor is running, and
the digital I/O inputs are used for estimating initial rotor position
and for starting the SRM.

SPRA420

26 Developing an SRM Drive System Using the TMS320F240

Power Electronics Hardware

The amount of current flowing through the SRM windings is
regulated by switching on or off power devices, such as
MOSFETs or IGBTs, which connect each SRM phase to a DC
bus. The power inverter topology is an important issue in SRM
control because it largely dictates how the motor can be
controlled.

There are numerous options available, and invariably the decision
will come down to trading off the cost of the driver components
against having enough control capability (independent control of
phases, current feedback, etc.) built into the driver. A popular
configuration, and the one used in this application report, uses 2
switches and 2 diodes per phase. This topology is depicted in
Figure 11.

Figure 11. Two-Switch Per Phase Inverter

Vbus

phase
winding

SPRA420

Developing an SRM Drive System Using the TMS320F240 27

Publications by Vukosavic and Stfanovic6 and Miller7 offer several
other configurations that require fewer switches per phase,
although with some penalty on control flexibility and maintaining
phase independence. A gate drive IC device, such as the IR2110,
is used to turn on and off the semiconductor switches. In the
topology of Figure 11, the low-side switch is usually held on during
a commutation interval, while the top switch is used to implement
the control. For independent current control of each phase, a low-
ohm sense resistor is placed between the source of the low-side
n-channel power MOSFET and ground.

A schematic diagram of the inverter used in this application report,
including the gate drive circuit and the connections to the EVM, is
given in Figure 12.

Figure 12. Schematic Diagram of SRM Inverter Using the IR2110 and
Connections to the EVM

IRF740

IRF740

IRF710

IRFD123

22

22

10k

.01µF

2.2µF

HFA15TB60

HFA15TB60

MUR160

7

5

6

3

1

2

+15

VS

VB

HO

LO

VCC

COM

VDD

LIN

HIN

VSS

SD

IR2110

+15

9

12

10

11

13

POWER GROUND

LOGIC GROUND

+VBUS

+LOAD

-LOAD

1

2

4

5

3

6

3 2

5 4

7403 MC14049

_

+

SENSE
RESISTOR

ADCINx

CMPi/PWMi

CMPj/PWMj

j=2,4,6

i=1,3,5

x=1,2,3

6 S. Vukosavic and V. Stfanovic, “SRM Inverter Topologies: A Comparative Evaluation,” IEEE IAS
Annual Meeting Conf. Record, 1990.
7 T. J. E. Miller (ed.), “Switched Reluctance Motor Drives,” Intertec Communications Inc., Ventura
CA, 1988.

SPRA420

28 Developing an SRM Drive System Using the TMS320F240

The diagram shows the components used for a single phase.
Each phase uses two IRF740 n-channel power MOSFETs for the
switching elements in the output stage. The IRF740 is rated at 400
VDC, 10 A. The drain to source on resistance of these devices is
0.55 Ω. The free-wheeling diodes used in the power stage are
HFA15TB60s, fast recovery diodes. The HFA15TB60 has a
reverse recovery time of 60 ns, and is rated at 600 VDC, 15 A.
Logic is implemented at the input to the gate drive IC such that the
top power MOSFET can be turned on only when the bottom
MOSFET is also on. The reasons for this limitation, and other
circuit details, are discussed more thoroughly in a publication by
Clemente and Dubhashi.8

Software Description

The software described in this application report is written in C
and is designed for operating a 3-phase 12/8 SRM in closed loop
current control and closed loop speed control. A block diagram of
the algorithms implemented is given in Figure 13.

Figure 13. Block Diagram of the SRM Controller.

650

WRUTXH

FPG

7
VDPS

WRUTXH WR

FXUUHQW

� Σ
B

.

SRVLWLRQ

HGJHV

FRPPXWDWLRQ

DQJOHV

DGYDQFH

DQJOH

FDOF

YHORFLW\

HVWLPDWRU

'& %XV

YROWDJH

3:0
�

Σ
B

LFPG
,QYHUWHU

FXUUHQW

RSWR�

FRXSOHUV

3� ,

SRVLWLRQSRVLWLRQ

HVWLPDWRU

VSHHG

FPG

θ
RQ

θ
RII
}

'63

YHORFLW\

FRQWUROOHU

FXUUHQW FRQWUROOHU

Velocity is estimated by monitoring the elapsed time between
opto-coupler edges, which are a known distance apart. A velocity
compensation algorithm determines the torque required to bring
the motor velocity to the commanded value.

8 S. Clemente and A. Dubhashi, “HV Floating MOS-Gate Driver IC,” International Rectifier
Application Note AN-978A, International Rectifier, El Segundo, CA, 1990.

SPRA420

Developing an SRM Drive System Using the TMS320F240 29

A commutation algorithm converts the torque command into a set
of phase current commands, and the current in each phase is
individually regulated using a fixed-frequency PWM scheme.
Further details on each of the algorithms are provided in
subsequent sections of this report.

Program Structure

Figure 14 shows the structure of the SRM control software for the
TMS320F240 DSP.

Figure 14. TMS320F240 SRM Control Program Structure

In it ia liza tion R out ines:
- D SP se tup
- Even t m anager in itializa tion
- SR M a lgorithm init ial iza tion
- Enab le in terrup ts
- Start background

S tar t

B ackgrou nd:
- V elocity estim ation
- V isual feedback

T im er ISR :
- C urren t con tro l
- Position estim ation
- C om m uta tion
- V elocity control

C apture ISR :
- Store cap ture data
- Schedu le position m sm t update
- Schedu le ve locity m sm t update

R un R outin es:

At the highest level, the software consists of initialization routines
and run routines. Upon completion of the necessary initialization,
the background task is started. The background is simply an
infinite loop, although when required, lower priority processing
including velocity estimation and a visual feedback routine is
executed. The velocity estimation involves double-precision
division arithmetic, thus it is executed in background mode so that
the timeline is not violated. This algorithm is initiated in the capture
interrupt service routine. The visual feedback function simply
toggles an LED on the EVM board to provide a signal to the user
that the code is running.

SPRA420

30 Developing an SRM Drive System Using the TMS320F240

All of the time critical motor control processing is done via interrupt
service routines. The timer ISR is executed at each occurrence of
the maskable CPU interrupt INT3. This interrupt corresponds to
the event manager group B interrupts, of which we enable only the
timer #3 period interrupt, TPINT3. The frequency, F, at which this
routine is executed is specified by loading the timer 3 period
register with the desired value. The SRM control algorithms which
are implemented during the timer ISR are the current control, shaft
position estimation, commutation, and velocity control. As
illustrated in Figure 15, only the current control and shaft position
estimation are executed at the frequency, F.

Figure 15. Processor Timeline Showing Typical Loading and Execution of SRM
Control Algorithms

5 1 2 3 4 5 1 2 3 4

Timer ISR
Processing

Capture ISR
Processing

Background
Processing

Total
Processing

timer 3 period interrupts

capture
interrupts

current control & position estimation

commutation

velocity control

read & store capture data

velocity estimation

Because of their lower bandwidth requirements, velocity control
and commutation are performed at a frequency of F/5.
Considering the timer ISR as being sliced into fifths with a pattern
repeating every five slices, commutation is run only in the 1st slice
and the velocity loop only in the 2nd. Current control and position
estimation are performed in each slice.

SPRA420

Developing an SRM Drive System Using the TMS320F240 31

The capture interrupt service routine is executed at each
occurrence of the maskable CPU interrupt INT4. This CPU
interrupt corresponds to the event manager group C interrupts, of
which we enable the three capture event interrupts, CAPINT1-3.
This ISR executes asynchronously to the timers on board the DSP
and the frequency of execution is dependent on the SRM shaft
speed according to the equation,

(sec) 60

(min) 1

(deg) 5.7

1

)rev(

(deg) 360
 (rpm) speedshaft (Hz)frequency ISR capture ×××= (22)

The capture ISR is used to determine which capture interrupt has
occurred, read the appropriate capture FIFO register, and then
store the data. Although no algorithm is explicitly executed in this
ISR, flags are set which initiate velocity and position estimation
actions. As described above, the velocity estimate update
calculation is performed in the background. The position
estimation algorithm, which executes during the timer ISR, is
notified that a new position measurement has been received.

Table 2 summarizes the processing requirements for each of the
major software functions for the SRM controller.

Table 2. Benchmark Data for the Various SRM Drive Software Modules

S/W Block Module #cycles execution
time @ 50

ns

execution
frequency

relative
time @ 5

kHz

velocity
estimation

background 3620 181.0 µs 800 Hz 1 29.0 µs

visual feedback background 60 3.0 µs 2 Hz 0.0 µs
current control timer ISR 948 47.4 µs 5000 Hz 47.4 µs

position
estimation

timer ISR 258 12.9 µs 5000 Hz 12.9 µs

commutation timer ISR 1296 64.8 µs 1000 Hz 13.0 µs

velocity control timer ISR 444 22.2 µs 1000 Hz 4.4 µs
misc. overhead timer ISR 140 7.0 µs 5000 Hz 7.0 µs

capture ISR capture ISR 500 25.0 µs 800 Hz1
4.0 µs

C context switch RTS.LIB 120 6.0 µs 5800 Hz 7.0 µs

Total 124.7 µs
1 at a shaft speed of 1000 rpm.

The data in Table 2 shows that when the timer ISR frequency, F,
is chosen as 5 kHz, that the overall processor loading is equal to

SPRA420

32 Developing an SRM Drive System Using the TMS320F240

%4.62
0.200

7.124
 loading processor ==

s

s

µ
µ

, (23)

when running the DSP at a 20 MHz clock frequency. The code
size is 2456 words and 167 words are required for variable/data
storage. Thus, the total memory requirement is less than 3 K
words. Complete code listings are given in Appendix A.

Initialization Routines

A flowchart describing the initialization routines is given in Figure 16.

Figure 16. Initialization Flowchart

disable interrupts

reset

DSP setup

initialize event manager

initialize SRM
algorithm parameters

initialize program
control counters& flags

enable interrupts

start background

SPRA420

Developing an SRM Drive System Using the TMS320F240 33

The DSP is configured so that the watchdog timer is disabled. The
TMS320F240 EVM has a 10 MHz crystal, which is used in
conjunction with the PLL module of the DSP to yield a 20 MHz
CPUCLK.

The event manager initialization configures the timer units, the
capture units, the compare units, and the A/D converters. Also,
the CAP1-CAP4 and IOPB0-IOPB3 pins, whose functions are
software programmable, are configured to operate as capture pins
and digital output pins, respectively.

Each of the timers are programmed to operate in the continuous
up count mode. Timer #1 provides the timebase for the fixed-
frequency PWM control of the phase current. Timer #2 provides
the timebase for the capture events, and timer #3 is used to
provide a CPU interrupt at a fixed rate. The compare units are
configured to the PWM mode, where PWMs 1,3, and 5 (used for
switching the high-side power MOSFET) are configured as active
high.

The SRM algorithm initialization defines the parameters of the
position estimation state machine and sets the initial conditions of
the motor, for example, setting the shaft velocity estimate to zero.
Also, during this routine, the logic states of the opto-couplers are
read from the digital I/O pins, and this information used to
estimate the rotor position.

Upon initializing several flags and counters which are used for
program flow control, the infinite loop background routine is called,
and the normal operation of controlling the SRM drive begins.

See the comments in the code listings found in Appendix A for
further information on the program initialization.

Current Controller

Current is regulated by fixed-frequency PWM signals with varying
duty cycles. The TMS320F240 accomplishes this using compare
units and output logic circuits. The compare units are programmed
for PWM mode, to use timer #1 as a time base. The desired
output logic polarity is controlled by the ACTR register. The PWM
frequency is specified by loading the period register of timer #1,
T1PER, with a value, P, defined by,

1−=
frequencyPWM

frequencyCPUCLK
P (24)

SPRA420

34 Developing an SRM Drive System Using the TMS320F240

For the F240, the CPUCLK frequency is 20 MHz. The percentage
duty cycle for the xth phase is controlled by loading the appropriate
compare register, CMPRx, with an appropriate value between 0
and P (0 = 0%, P/2 = 50%, P = 100%). A PWM frequency of 20
kHz is used. The value is significantly higher than the bandwidth
of the current loop and also at a frequency which is inaudible.

The percentage duty cycle command is calculated by the current
loop compensation algorithm, which is designed using linear
analysis. The analysis begins with an approximate model of the
current loop, given by Figure 17.

Figure 17. Approximate SRM Current Loop Model.

A/D Converter

SRMPWM

Feedback Gain

Loop Gain

V iicmd

i fb

0

1023

1/Rm

(L/Rm)s + 1

Kfb

K
1

P

1023

5

0

P

1- e-sT

s

ZOH

Current control algorithm

Vbus

Using the SRM data of , and with P = 999, Kfb = 1.17 V/A, the
open-loop frequency response, G(ω), of the SRM current loop,
from icmd to i fb, is given in Figure 18 for values of phase inductance
at both the aligned rotor position (L = La) and the unaligned rotor
position (L = Lu).

SPRA420

Developing an SRM Drive System Using the TMS320F240 35

Figure 18. Frequency Response Plots for the SRM Current Loop at the
Unaligned Position (Squares) and at the Aligned Position (Circles)

10 100 1000 10
4

-200

-100

0

DC gain = 14.1 dB + 20log10(K)

slope = -20dB/decade

desired
0 dB

desired P.M. = 65 deg.

-180 deg

R
Lmin

= 200 rad/s (32 Hz)

1.16 decade

frequency (Hz)

m
a

g
ni

tu
de

 (
d

B
)

p
ha

se
 (

d
eg

)

370 Hz

Because of the digital implementation of the current loop,
additional phase loss, beyond the 90° due to the motor pole, is
contributed by the sample and hold process and the processing
delay inherent in the loop. These dynamics essentially limit the
current loop bandwidth to an open loop crossover frequency near
370 Hz. The time delay due to the zero-order hold (ZOH) is equal
to ½ of the sampling period, in this case ½ of 200 µsec, or 100
µsec. Since the phase loss at any frequency, ω, due to a pure time
delay, τ, is given by the expression,

θ ωτloss = (25)

using (25) we calculate that the phase loss due to the ZOH
sampling at 370 Hz is equal to

$3.13rad 232.0)10100(3702 6 ==×××= −πθ loss (26)

SPRA420

36 Developing an SRM Drive System Using the TMS320F240

Assuming that the processing delay is equal to 50% of a loop
cycle, or another 100 µsec, then the net effect of digital
implementation yields about 26° of phase loss at 370 Hz. When
combined with the 90° due to the motor pole, the phase loss
through the loop is approximately 116°, at 370 Hz. If the loop gain,
K, is chosen such that the 0 dB point of the open-loop magnitude
occurs at 370 Hz, then the resulting phase margin in the loop will
be about 64°. This amount of phase margin provides a very stable
loop design. The DC gain of the loop is given by,

K V K

P R
K

bus fb⋅ ⋅ ⋅
⋅ ⋅

=
1023

5
5092. (27)

which when written in decibels is equal to,

)(log201.14gain DC 10 KdB+= (28)

For frequencies where ω > (R/L), the magnitude of the loop
response is equal to,

G dB K
R L

() . log ()ω
ω

= + − ×






141 20 210 (29)

In (29), letting L = Lu provides the most conservative choice,
resulting in a stable design for all rotor positions. Setting the left-
hand side of (29) to 0 dB, while ω = 2π(370) rad/s, and solving for
K, yields the value of K which insures the desired open-loop
crossover point for the current loop. In this case K = 2.8.

Often, a PI controller is used. In this example adding an integrator
to the control law will not make much difference in the loop
performance, except only at very low speeds, because the
integrator action must be slower than the motor pole to stabilize
the loop. In this example using a 3-phase, 12/8 SRM, the motor
pole is located near 32 Hz. The SRM operating speed required to
produce the equivalent of 32 Hz commands to the SRM current
loops is 240 rpm. Thus, in this case, only at operating speeds
lower than 240 rpm would any integrator action be helpful.

The current loop gain is set using the ILOOP_GAIN constant in
the file CONSTANT.H. For this value, Q3 scaling is used, thus
setting ILOOP_GAIN = 22 results in K = 2.75, which is sufficiently
close to the desired value of 2.8, for this application.

SPRA420

Developing an SRM Drive System Using the TMS320F240 37

Position Estimation

Recall that Figure 9 showed six possible combinations of the opto-
coupler output states per electrical cycle of the SRM. The
transitions of the outputs define specific angles. This information
can readily be described by a state machine, such as Figure 19.

Figure 19. State Transition Diagram for the SRM Position Pickoff

010
[2]

011
[3]

001
[1]

110
[6]

101
[5]

100
[4]

Opto #3

Opto #3

Opto #2
Opto #2

Opto #1

Opto #1

300$

0$60$

120$

180$ 240$

The state, [], is defined by ‘zyx’, where z is the logic state of opto-
coupler #3, y of opto-coupler #2, and x is the state of opto-coupler
#1.

Position measurements are made by using this state machine and
identifying which opto-coupler transition occurs, using the DSP’s
capture units.

The opto-couplers and slotted disk provide position
measurements at six discrete points per electrical cycle of the
SRM. Many commutation schemes, however, require continuous
position information to optimize performance. Thus, to provide a
position estimate between measurements, the equation,

s
f

f
kkk

1
)(ˆ)1(ˆ)(ˆ ×+−= ωθθ (30)

is used, where fs is the estimation update rate and k represents
the time of the most recent capture edge. Equation (30) is
implemented, using double precision arithmetic, as follows:

SPRA420

38 Developing an SRM Drive System Using the TMS320F240

long dp; /* delta-position in mechanical angle */
int speed;
int temp;

if (anSRM->wEst_10xrpm > 0) {
dp = anSRM->wEst_10xrpm * K_POSITION_EST + anSRM->dp_remainder;
anSRM->dp_remainder = dp & 0xffff;
temp = (int) (dp >> 16);
anSRM->position = anSRM->position + (temp * NR);

}
else {

speed = -anSRM->wEst_10xrpm;
dp = speed * K_POSITION_EST + anSRM->dp_remainder;
anSRM->dp_remainder = dp & 0xffff;
temp = (int) (dp >> 16);
anSRM->position = anSRM->position - (temp * NR);

}

The constant K_POSITION_EST (Q16), compensates for units
(shaft velocity is available in the software as SRM.wEst_10xrpm with
units of rpm × 10) and is calculated according to the equation,

162
360

65535

(rev)

360

(sec) 60

(min) 1(sec) 1
10)rpm(

10

1
_ESTK_POSITION ××××××=

$

$

sf (31)

for, fs = 5 kHz, K_POSITION_EST = 1432.

During startup, the digital I/O ports determine the state of the rotor
and initial position is estimated in the mid-range of the state. For
example, a reading of [100], (consistent with Figure 19) yields an
initial position estimate of 270 electrical degrees. The capture
units provide subsequent measurements, by recognizing the
edges, or state transitions.

Velocity Estimation

The three opto-coupler outputs produce an edge every 7.5° of
mechanical rotation, and each opto-coupler produces an edge
every 22.5° mechanical. At each edge, velocity is calculated
according to the equation,

�ω θ θ
= =

⋅ ⋅∆
∆

∆
t

f

N
clk60

(32)

where,

�ω is the velocity estimate (rpm)

∆θ is the distance between opto-coupler edges (rev)

SPRA420

Developing an SRM Drive System Using the TMS320F240 39

∆t is the time between edges (min)

N is the number of clock counts between edges

fclk is the clock frequency (Hz)

The time between edges is determined from the capture units.
The capture units are programmed via the CAPCON register to
use timer #2 as a time base, and to trigger on both rising and
falling edges. Timer #2 is programmed to count at 1.25 MHz via
the T2CON. Although we trade-off resolution in measuring ∆t, a
clock frequency of 1.25 MHz is chosen, versus a maximum of 20
MHz, so that the 16-bit registers containing the count do not
overflow except at very low speeds. Using a 1.25 MHz clock, the
counter overflows only at shaft speeds less than 71.5 rpm,
considered very low for our application. So that we can operate
(although degraded) at speeds lower than about 100 rpm, ∆t in
(32) is determined by a software counter of the number of 5 kHz
timer interrupts that occur between opto-coupler edges.

It can be shown that when instantaneous velocity is estimated by
(32) that the quantization of a velocity estimate is given by

Q
d

dN fclk
= = ⋅ ⋅

�ω ω
θ

2

60 ∆ (33)

and, Q is the quantization of velocity (rpm). In our design, ∆θ =
1/16 revolution (22.5° mechanical) and fclk = 1.25 MHz. Thus at
1200 rpm, the quantization is 0.31 rpm.

Various filtering can be applied to (32) for smoothing the velocity
estimate, depending upon the application. What has proven useful
is a combination of FIR and IIR filtering of the form:

� () � () () � ()
()

ω α ω α ωf f
j k

k

k k j= ⋅ − + − ⋅
= −
∑1 1

5
(34)

The FIR filter portion of (34) uses six (from k − 5 to k)
instantaneous velocity estimates. Because there are six opto-
coupler edges per electrical cycle, once per cycle estimation
errors are removed.

The FIR filtering and the determination of the instantaneous
velocity estimate is calculated using double precision as follows:

DWORD a1,a2,a3,a4,a5,a6;
DWORD sum_cnt;
int inst_velocity;

SPRA420

40 Developing an SRM Drive System Using the TMS320F240

/*---*/
/* Obtain instantaneous velocity estimate */
/*---*/
if (mode == 1) {/* use timer #2 as time base */

/*---*/
/* FIR filter for removing once per electrical cycle */
/* effects */
/*---*/
a1 = (DWORD) anSRM->capture_delta[0][0];
a2 = (DWORD) anSRM->capture_delta[0][1];
a3 = (DWORD) anSRM->capture_delta[1][0];
a4 = (DWORD) anSRM->capture_delta[1][1];
a5 = (DWORD) anSRM->capture_delta[2][0];
a6 = (DWORD) anSRM->capture_delta[2][1];
sum_cnt = a1+a2+a3+a4+a5+a6;

/*--*/
/* apply “velocity = delta_theta/delta_time” algorithm */
/*--*/
sum_cnt = K1_VELOCITY_EST/sum_cnt;
inst_velocity = ((int) sum_cnt) * anSRM->shaft_direction;

}

else { /* else, use timer ISR count as time base */

/*--*/
/* apply “velocity = delta_theta/delta_time” algorithm */
/*--*/
sum_cnt = K2_VELOCITY_EST/anSRM->delta_count;
inst_velocity = ((int) sum_cnt) * anSRM->shaft_direction;

}

Here, K1_VELOCITY_EST and K2_VELOCITY_EST are
constants which incorporate ∆θ and units so that the
instantaneous velocity estimate has units of (rpm × 10). The
constants are calculated using,

10
(min)

(sec) 60

(deg) 360

(rev) 1

(sec)

(cnts) 5000
 (deg) 7.5 1 Y_ESTK2_VELOCIT

10
(min)

(sec) 60

(deg) 360

(rev) 1

(sec)

(cnts) 1.25e6
 (deg) 22.5 6 Y_ESTK1_VELOCIT

×××××=

×××××=

(35)

The IIR filtering is implemented as:

long filt_velocity;

/*---*/
/* IIR filter for smoothing velocity estimate */
/*---*/
filt_velocity = (ALPHA * anSRM->wEst_10xrpm)

SPRA420

Developing an SRM Drive System Using the TMS320F240 41

+ (ONE_MINUS_ALPHA * inst_velocity);
anSRM->wEst_10xrpm = (int) (filt_velocity >> 3);

The filter coefficient, α, is chosen equal to 0.875, [ALPHA = 7
(Q3)]. Let α approach zero for a higher bandwidth velocity
estimate (less smoothing, more noise) and let α approach one for
more smoothing, less noise, and lower bandwidth.

Commutation

The commutation strategy ultimately determines the performance
of the SRM. Torque-speed range, machine efficiency, torque
ripple, and acoustic noise all depend, to some extent, on the
commutation algorithm. Design of the commutation algorithm must
consider requirements in each of these areas, while trading off
cost issues such as the algorithm complexity and the availability or
accuracy of various sensors. For a current controlled SRM,
commutation can be described as the transformation of the
desired net motor torque into a set of desired phase currents. This
is described mathematically by the equation,

cmdj
j

cmd Tgi ×⋅=)((36)

and j = 1,…,m and m is the total number of motor phases. In
general, g(), is a non-linear function of shaft angle θ, shaft speed
ω, the desired torque command Tcmd, the DC bus voltage Vbus, and
the motor instantaneous inductance, L. The most simple choice
for g() is given by



 +<≤

=
otherwise,0

)(,1
)(

δθθθθ
θ ONONg (37)

where the dwell angle, δθ, must be at least equal to 360°/m
(electrical), to avoid regions of zero torque production. An
example of commutation described by (37) is illustrated by Figure
6. The turn-on angle, θON, is typically a few degrees beyond the
unaligned position of a phase. Equation (37) is useful for only
single-quadrant operation. For four quadrant operation, (37) must
be modified, for example,

[]
[]








<++<≤+

>+<≤
=

otherwise,0

0&)()(,1

0&)(,1

),(cmdONON

cmdONON

cmd T

T

Tg δθπθθπθ
δθθθθ

θ (38)

SPRA420

42 Developing an SRM Drive System Using the TMS320F240

where the conduction angles are offset by 180° electrical
(π radians) when negative torque is desired. This allows a phase

to conduct during the region where 0<
θd

dL
. An even more flexible

approach, which results in a wider operating range for the SRM,
allows the turn-on and dwell angles to vary. For example, (38) is
extended to allow θON and δθ, to be functions of velocity, desired
torque, and the DC bus voltage.

Often, for minimizing torque ripple, the commutation is designed
such that two phases conduct simultaneously and share the job of
producing the desired SRM torque. In this case, (38) is further
extended to a function of the form,

[]











<







++<

≤+

>+<≤

=

otherwise,0

0&
)(

)(
),(

0&)(),(

),(cmd
ON

ON

cmdONON

cmd T

T

Tg
δθπθθ

θπθ
θρ

δθθθθθρ

θ (39)

where ρ(θ) is the sharing function. Sharing functions are not
implemented in this application report, however, further
information on the choice of sharing functions can be found in a
publication by Kjaer, et al. 9 Essentially commutation schemes of
the form in (39) use knowledge of the motor characteristics to
design a non-linear function, ρ(θ), that produces a linear output
torque.

In this example, the commutation coefficients, g(), were
calculated using (38), where θON = π/6 + θadv (radians), δθ = π/3
(radians), and the advance angle, θadv, is given by (21). This yields
a single-quadrant, fixed-dwell, variable turn-on commutation
algorithm. This algorithm is implemented as follows:

int phase;
WORD electricalAngle;
WORD angle;
int channel;
long advance;

/*---------------------------*/
/* Advance angle calculation */
/*---------------------------*/
advance = (anSRM->wEst_10xrpm * anSRM->desiredTorque);
advance = advance >> 9;

/*---*/
/* Offset for advance angle negative torque, if required */
/*---*/

9 P. C. Kjaer, J. Gribble, and T. J. E. Miller, pp. 1585-1593.

SPRA420

Developing an SRM Drive System Using the TMS320F240 43

if (anSRM->desiredTorque > 0) {
electricalAngle = anSRM->position + (int) advance;

}
else {

electricalAngle = anSRM->position + PI_16 - (int) advance;
}

for (phase=0; phase< NUMBER_OF_PHASES; phase++) {

/*------------------------------*/
/* 120 degree offsets for phase */
/*------------------------------*/
angle = electricalAngle - phase * TWOPIBYTHREE_16;
/*---*/
/* turn phase on, if between desired angles and switch */
/* the mux on the A/D to measure the desired */
/* phase current */
/*---*/
if ((angle >= (PIBYSIX_16)) && (angle < (FIVEPIBYSIX_16))) {
anSRM->active[phase] = 1;
channel = anSRM->a2d_chan[phase];
switch_mux(channel,channel+8);
}
else {
anSRM->active[phase] = 0;
}
}

}

SPRA420

44 Developing an SRM Drive System Using the TMS320F240

As seen in the code above, the advance angle calculation (which
yields an advance angle in units of bits, 65535 bits = 360 electrical
degrees) is computed according to the equation,

5122,
)10(ˆ)(

)(9 ==
××

= K
K

rpmbitsi
bits cmd

adv
ω

θ (40)

From (21) and (40) we can show that the calculation for K which
includes Lmin, Vdc, and accounts for units is given by

(e)360

(bits) 65535

(m)1

e)(8

(rev)

m)(360

(sec) 60

(min) 1

(bits) 4.239

(A) 1

10

10)rpm(

(V)

1
)H(

1
$$

$$

××××××××=
bus

u V
L

K (41)

With Lu and Vbus given by Table 1, K = 776.25. However, the value
of 512 was used because dividing by multiples of 2 is readily
accomplished using simple shift instructions. For our application,
this simplification provided satisfactory results.

Velocity Controller

Speed is regulated in a closed-loop manner by comparing the
desired shaft velocity to the estimated shaft velocity and then
compensating the error. We use a PI (proportional plus integral)
control action for the velocity loop compensation, so that the
steady-state velocity error is zero. The PI coefficients are
determined using linear analysis.

Figure 20 shows a simplified model of the velocity loop, where the
coefficient, γ, having units of (rad/s)/A, is a non-linear quantity,
including the shaft/load inertia and the instantaneous torque
constant of the SRM.

SPRA420

Developing an SRM Drive System Using the TMS320F240 45

Figure 20. Simplified Block Diagram of SRM Velocity Loop Using PI Control

A/D
Gain

SRMPWM
Gain

Feedback
 Gain

Current
 Loop
Gain

V iicmd

i fb

1/Rm

(L /Rm)s + 1

Kfb

K
Vbus

P

1023

5

1- e-sT

s

ZOH

γ
s

1- e-sT*

s

Κv(s + a)
s

ZOH

ωcmd
ω

Velocity Loop Algorithm

*

*

ln

ln

T
s

T
α

α

−

−

IIR Filter

ω̂

In the figure, Kv controls the loop gain and ‘a’ is the radian
frequency of the PI zero.

The non-linearity in γ is due to the non-linear torque/current
relationship of the SRM where for non-saturating conditions is
given by (18) and, in general, by (15). Thus, the open-loop gain of
the velocity loop will vary, approximately, as current squared. This
variation can be significant over the operating range of the SRM.
From 4 A to 1 A, for example, the gain variation is 16, or 24 dB.
Depending on the application, this gain variation may need to be
compensated, with a square root law, for example, to stabilize the
loop. In this example, the loop compensation was designed with
sufficient margin, at the expense of dynamic response, so that this
variation can be ignored. The IIR filter used for smoothing the
velocity estimate, has a z-transform given by,

α
α

−
−=
z

z
zH

)1(
)((42)

and is modeled in the Laplace domain as shown in Figure 20.

Another interesting feature of this speed loop is that although the
velocity loop update rate is a fixed-frequency of 1 kHz, the
feedback (provided by the opto-coupler edges) occurs at a
variable rate which is a function of rotor speed and given by,

SPRA420

46 Developing an SRM Drive System Using the TMS320F240

*

1
)rpmin speed(8.0(Hz)

T
fsamp =×= (43)

This behavior generates a variable time delay in the velocity loop,
due to the zero-order hold, and also makes the dynamics of the
IIR filter time-varying.

Using the information in Table 1 and Figure 20 it is possible to

obtain the open-loop frequency response,
cmdω
ω̂

 (see Figure 21)

for the velocity loop, independent of γ.

Figure 21. Open-Loop Frequency Response of the SRM Velocity Loop at Several
Motor Speeds, for a = 0.73 rad/s

0.01 1 100

-250

-200

-150

-100

frequency (Hz)

p
ha

se
 (

d
e

g)
m

a
g

ni
tu

de

300 rpm

600 rpm

1200 rpm

100.1

The phase loss due to the variable time delay as a function of
rotor speed is apparent.

The absolute magnitude as a function of frequency is unknown;
however, the shape of the magnitude and the phase are correct.
From Figure 21, clearly the desired open-loop crossover
frequency is in the 1-4 Hz range for this particular loop. By moving
the PI zero, a, beyond 0.73 rad/s, the bandwidth can be extended,
while trading off stability margins. If the load inertia and motor
torque constant information are known (i.e. γ known), then Kv can
be determined analytically; otherwise, the velocity loop gain is set
experimentally.

SPRA420

Developing an SRM Drive System Using the TMS320F240 47

The PI algorithm is implemented as:

/*-----------------------------*/
/* calculate error signal */
/*-----------------------------*/
speed_error = anSRM->wDes_10xrpm - anSRM->wEst_10xrpm;

/*-----------------------------*/
/* integrate error*/
/*-----------------------------*/
anSRM->integral_speed_error = anSRM->integral_speed_error +
(long)speed_error;

/*-----------------------------*/
/* apply integrator limit */
/*-----------------------------*/
if (anSRM->integral_speed_error > INTEGRAL_LIMIT) {

anSRM->integral_speed_error = INTEGRAL_LIMIT;
}
if (anSRM->integral_speed_error < -INTEGRAL_LIMIT) {

anSRM->integral_speed_error = -INTEGRAL_LIMIT;
}

/*-----------------------------*/
/* PI filter*/
/*-----------------------------*/
integral_error = (int) ((KI*anSRM->integral_speed_error) >> 13);
anSRM->desiredTorque = ((KP*speed_error) >> 1) + integral_error;

This implements a PI compensator, with integrator limits, of the
form,





×=

=
⇒

+
=+

zKK

KK

s

zsK

s

K
K

vI

vpvI
P

)(
(44)

Through experimentation, it was determined that Kv = 0.5,
provided satisfactory performance. In the software implementation
of the integrator, the multiplication by ∆t is not performed. Thus,
this factor is carried implicitly in KI. For z = 0.73 rad/s and ∆t =
1/1000 sec, KI = 0.365. This is approximately implemented by
setting KI = 3 (scaled Q13 × 1000) in the file CONSTANT.H.

The integrator limit value is calculated such that the condition is,

.1000
2

IMITINTEGRAL_L KI
12

≤×

SPRA420

48 Developing an SRM Drive System Using the TMS320F240

Position Sensorless Control

In this section, the operation of an SRM without using a shaft
sensor to report the rotor position is discussed. As in the prior
example, SRM commutation typically involves feeding back a rotor
position signal to a controller. Position sensors often used include
encoders, resolvers, hall sensors, or opto-couplers. For a variety
of reasons, including lower cost & better reliability, it is desirable to
eliminate the shaft position sensor.

Various schemes have been developed to address the sensor
elimination problem.10 Because of the salient nature of the SR
motor’s rotor and stator, inductance varies in the motor as a
function of rotor position. This variation is sufficiently sensitive
such that the motor’s inductance profile can be used to estimate
rotor position. All position sensor elimination methods for SR
motors exploit this relationship in one way or another.

One novel approach described by Lyons, et al,11 uses an estimate
of the flux linked by a phase and a model of the SR motor’s
magnetic characteristics, such as Figure 22, to determine if the
rotor angle is approaching, or has gone past, a known reference
angle.

Figure 22. SRM Magnetization Curves

current (A)

flu
x-

lin
ka

ge
 (

V
-s

)

aligned angle

unaligned
angle

reference
angle

measured current

reference
flux

10 W. F. Ray and I. H. Al-Bahadly, “Sensorless Methods for Determining the Rotor Position of
Switched Reluctance Motors,” Proc. EPE Conf., Vol. 6, 1993, pp. 7-13.
11 J. Lyons, S. MacMinn, and M. Preston, “Flux/Current Methods for SRM Rotor Position
Estimation,” IEEE IAS Annual Meeting Conf. Record, 1991, pp. 482-487.

SPRA420

Developing an SRM Drive System Using the TMS320F240 49

The model maps current to flux-linkage at various rotor positions.
Thus, given a phase current measurement, the flux-linkage at the
reference angle can be determined, as illustrated in Figure 22.

In their sensorless approach, the basic idea is to compare the flux
estimate to the reference flux calculated from the model in order to
gauge the rotor’s position with respect to the reference angle.

In this example, we describe a position sensorless commutation
method which extends this idea, and removes the requirement for
having an a priori model of the motor characteristics. The
fundamental idea is to learn, through an on-line identification
algorithm, the flux-current characteristics of each phase of the
motor at the aligned position, and then use this information to
commutate the motor by approximating the motor’s magnetic
characteristics at an appropriate reference angle.

Overview of Method

Exciting an arbitrary motor phase, with current large enough to
generate torque in excess of the starting friction, will align the rotor
with the energized phase. Once at the aligned position, a
calibration sequence is cycled through where, as illustrated by
Figure 23, desired levels of current are commanded to each motor
phase at a series of discrete test points.

Figure 23. Calibration Sequence for SRM at Aligned Position

unaligned angle

flu
x-

lin
ka

ge
 (

V
-s

ec
)

aligned angle

test pointsi1

i2

in

current

For the j th test point (j = 1,…,n), phase flux is estimated for N
cycles via a discretized version of the integral form of Faraday’s
law,

SPRA420

50 Developing an SRM Drive System Using the TMS320F240

[])0(ˆ)(ˆ)(ˆ)(ˆ)(ˆ

1

φφ +









⋅−= ∑

=

TkRkikvN
N

k
jj (45)

where,

n = total number of test points

�()φ k = estimated phase flux at time, k

�()v k = estimated voltage across the phase winding

�()i k = measured phase current

� ()R k = estimated phase resistance

T = sampling rate

N = number of intervals in the estimation period

)0(φ̂ = initial flux-linked by the phase, known equal to 0.

At the end of each estimation period (k = N), flux/current data pairs
[)(ˆ Njφ ,)(ˆ Ni j] are recorded and the next current test point is

commanded. The procedure is repeated for each of the n test
points, and then for each of the remaining phases.

Upon completion of the calibration sequence and subsequent
curve fitting of the flux/current data, let g(i) be the resulting
function describing the estimated magnetic characteristics of the
motor at the aligned angle,

�(,) ()φ θaligned i g i= (46)

Since flux-linked increases monotonically with angle, moving from
the unaligned angle to the aligned angle, the magnetic
characteristics of the motor at some other angle, θref , can be
defined by the expression,

�(,) () ()φ θ αref i i g i= (47)

where,

 0 ≤ α(i) ≤ 1 ∀ i.

SPRA420

Developing an SRM Drive System Using the TMS320F240 51

As in the publication by Lyons, et al,12 a comparison of the
estimated flux-linked to the predicted flux-linked at a reference
position is the basis for commutating the motor. Thus, during
normal operation of the SRM, if flux is estimated using (45) (with N
undefined for normal operation) and if the commutation function,
α(), is intelligently designed, then satisfying the condition,

)]([)]([)(ˆ kigkik measmeas ×≥ αφ (48)

will define appropriate switching points (i.e. commutations) for the
SRM.

12 J. Lyons, S. MacMinn, and M. Preston, pp. 482-487.

SPRA420

52 Developing an SRM Drive System Using the TMS320F240

Example – SRM Drive without Position Sensor

This section describes an example application of a position
sensorless SRM drive.

Hardware Description

See the Hardware Description in the Example - SRM Drive With
Position Feedback section above. The hardware used in this
example is identical to that used in the previous example, with the
exception that the connections between the DSP and the opto-
couplers do not exist here.

Software Description

The software described in this section is written in C and is
designed for operating a 3-phase 12/8 SRM in closed loop current
and closed loop speed control, without using a shaft position
sensor. A block diagram of the algorithms implemented is given in
Figure 24.

Figure 24. Block Diagram of the SRM Sensorless Controller

WRUTXH

FPG

7
VDPS

Σ .

'& %XV

YROWDJH

3:0
�

Σ
B

LFPG
,QYHUWHU 650 FXUUHQW

3�,

SRVLWLRQVSHHG

FPG

∫

g(i)

&RPSDUH

FRXQW

� N+]

F\FOHV

9HORFLW\

(VWLPDWRU

φswitch
&RPPXWDWLRQ

6LJQDO

UHVHW

ODWFK

3:0 GXW\

UDWLR

�

B

α().

�i

�v

�R
�φ

ΣΠ

�ω

YHORFLW\

FRQWUROOHU

FXUUHQW FRQWUROOHU

'63

SPRA420

Developing an SRM Drive System Using the TMS320F240 53

Current in each phase is individually regulated using a fixed-
frequency PWM scheme. Velocity is estimated by monitoring the
elapsed time between phase commutations, which are a known
distance apart. Velocity error is determined by comparing the
speed command to the velocity estimate. The velocity controller,
consisting of a PI compensator, calculates the motor torque
required to bring the velocity error to zero. The commutation
algorithm converts the torque command to a phase current
command. Also, position sensorless commutation is performed, as
described above, by comparing the estimated phase flux to the
flux predicted for the reference angle. Further details on each of
the algorithms are provided in subsequent sections of this report.

Program Structure

Figure 25 shows the structure of the sensorless SRM control
software for the TMS320F240 DSP.

Figure 25. TMS320F240 Position Sensorless SRM Control Program Structure

Initialization Routines:
- DSP setup
- Event manager initialization
- SRM algorithm initialization
- Enable interrupts
- Start background

Start

Background:
- Training & Calibration
- Velocity estimation
- Visual feedback

Timer ISR:
- Current control
- Commutation
- Velocity control

Run Routines:

SPRA420

54 Developing an SRM Drive System Using the TMS320F240

At the highest level, the software consists of initialization routines
and run routines. Initialization is started following each processor
reset. Upon completion of the initialization, the background task is
started. As in the prior example, the background task is an infinite
loop where, when required, lower priority processing tasks
(velocity estimation and a visual feedback routine) are executed.
In addition to these two operations, in the sensorless drive, a
training and calibration routine is performed in the background.
The training and calibration routine is immediately executed upon
entry into the background task, initiated by the setting of a flag
during initialization. Like initialization, this operation is executed
only one time per software reset, however, because current
control is required during the training, it is performed with the run
routines. While the training and calibration algorithm is executing,
only the current control algorithm is being executed in the timer
ISR. As illustrated in Figure 26, the processor is 100% loaded
during this time.

Figure 26. Processor Timeline Showing Loading With Training and Calibration
Routine Active

5 1 2 3 4 5 1 2 3 4

Timer ISR
Processing

Background
Processing

Total
Processing

timer 3 period interrupts

current loop

commutation

velocity loop

training & calibration

Upon completion of the training/calibration routine, normal motor
operation proceeds.

During normal operation of the SRM, the processor timeline is
typical of that shown in Figure 27.

SPRA420

Developing an SRM Drive System Using the TMS320F240 55

Figure 27. Processor Timeline During Normal SRM Operation

5 1 2 3 4 5 1 2 3 4

Timer ISR
Processing

Background
Processing

Total
Processing

timer 3 period interrupts

current loop

commutation

velocity loop

velocity estimation

commutation occurs

The current loop and commutation algorithm are both performed
at the frequency, F, while the velocity control algorithm is
executed at a frequency F/5. As mentioned above, the velocity
estimation algorithm executes in background, and a new estimate
is calculated following each commutation instance. This frequency
is given by,

(rev)sec)(60

(min) 1
(rpm) speedshaft (Hz)frequency n commutatio RmN

××= (49)

All time critical motor control processing is done via the timer
interrupt service routine. The timer ISR is executed at each
occurrence of the maskable CPU interrupt INT3. This interrupt
corresponds to the event manager group B interrupts, of which
only the timer #3 period interrupt, TPINT3 is enabled. The
frequency, F, at which this routine is executed is specified by the
value loaded into the timer 3 period register.

SPRA420

56 Developing an SRM Drive System Using the TMS320F240

Table 3. Benchmark Data for the Various Position Sensorless SRM Drive
Software Modules

S/W Block Module #Cycles Execution
Time @ 50

ns

Average
Execution
Frequency

Relative
Time @ 6

kHz

Velocity Estimation background 2512 125.6 µs 400 Hz 1 8.4 µs
Visual Feedback background 60 3.0 µs 2 Hz 0.0 µs

Current Control2 timer ISR 1160 58.0 µs 6000 Hz 58.0 µs
Commutation3 timer ISR 248 12.4 µs 5600 Hz 1 11.6 µs

Commutation4 timer ISR 1272 63.6 µs 400 Hz 1 4.2 µs
Velocity Control timer ISR 494 24.6 µs 1200 Hz 4.9 µs

Misc. Overhead timer ISR 140 7.0 µs 6000 Hz 7.0 µs
C Context Switch RTS.LIB 120 6.0 µs 6000 Hz 6.0 µs

Total 100.1 µs
1at a shaft speed of 1000 rpm
2including flux estimation
3when commutation condition is not met
4when commutation condition is met

The data in Table 3 shows that when the timer ISR frequency, F,
is chosen as 6 kHz, that the overall processor loading is equal to

%5.60
7.166

1.100
 loading processor ==

s

s

µ
µ

, (50)

when using a 20 MHz dsp clock frequency. The code size is 3599
words, and 326 words are required for variable/data storage.
Thus, the total memory requirement is less than 4 K words.
Complete code listings are given in Appendix B.

Initialization Routines

The initialization for the sensorless SRM drive is fundamentally
identical to that described in the Initialization Routines section and
by Figure 16. In each example, the DSP setup is equivalent.
Although timer #2 is unused in this example, the same event
manager initialization code is used for the sensorless example as
was used in the prior example.

Training and Calibration

The sequence used to estimate the SRM’s flux-linkage versus
current characteristics is described in the flowchart diagram of
Figure 28.

SPRA420

Developing an SRM Drive System Using the TMS320F240 57

Figure 28. SRM Training Algorithm Flowchart

start

stop

p=1

energize phase p

wait for rotor to settle

return phase p current
to 0.

reset flux integrator

command phase current
to the jth test point.

j=1

wait for N∆t seconds while
controlling phase current &
estimating phase flux

record the jth flux estimate/
measured current data pair

return phase p current
to 0.

fit data for the pth phase

j=j+1

p=p+1

j > # desired
data points?

p > # of
motor phases?

YES

YES

NO

NO

There are several issues of interest to point out in the algorithm.

SPRA420

58 Developing an SRM Drive System Using the TMS320F240

First, the SRM is an undamped system, or more precisely, very
lightly damped with friction. Thus after energizing a motor phase,
the shaft will oscillate about the aligned position. This ringing is a
complex function of parameters including the shaft inertia, load
inertia, friction, and the angle traveled from rest to the aligned
position. To improve estimation accuracy, we wait for a certain
amount of time for the rotor to reach the aligned position and
settle. For our particular example, we used a value of 6 seconds,
which was determined through experimentation and observation.
The wait time is specified using the macro WAIT(300), where the
argument of the macro specifies the number of 20 msec periods
for waiting.

Second, how long should the time, N∆t, be? N∆t is the amount of
time that the current is allowed to flow in the motor phase prior to
returning the phase current to 0 and making the next
measurement. The time should be long enough for the current to
reach a steady state value. This in turn is related to the bandwidth
of the current control loop. Using an approximate linear analysis
similar to that in the Current Controller section, it can be shown
that for the SRM described in Table 1, the current will reach
approximately 98% of its final value in 12 msec. In this example, a
value of 60 msec, specified by WAIT(3), was used. This should be
more than adequate.

Third, how many data points should be used? More data points
will yield a better estimate at the expense of requiring more
memory and taking more measurement/processing time. The
number of data points is specified with the NUM_POINTS
constant. Here the value NUM_POINTS = 80 was used.

Finally, and most importantly, how should the estimation of the
magnetization curve at the aligned position be accomplished? In
other words, how should the data be fit to a model? This is the
classic estimation problem which, in itself, can be a topic of much
discussion. The interested reader is encouraged to review the
publications by Anderson and Moore13 and Lewis.14

When considering this question, it is important to realize that when
implementing the flux estimation algorithm (45) errors exist. Let
the estimates/measurements of phase voltage, current and
resistance by given by,

13 B. Anderson and J. Moore, Optimal Filtering, Prentice-Hall Publishing, Englewood Cliffs, NJ,
1979.
14 F. Lewis, Applied Optimal Control & Estimation, Prentic Hall Publishing, Englewood Cliffs, NJ,
1992.

SPRA420

Developing an SRM Drive System Using the TMS320F240 59

�() () ()

�() () ()

�() () ()

v k v k v k

i k i k i k

R k R k R k

= +

= +

= +









δ
δ

δ
(51)

where the right-hand side terms of (51) are the true values and
associated perturbations of voltage, current, and phase
resistance.

By substituting (51) into (45) we obtain,

() ()()[])0(ˆ)()()()()()(ˆ

1

φδδδφ +









⋅++−+= ∑

=

TkRRkikikvkvN
N

k
jj (52)

The development of an estimation algorithm proceeds by
specifying an error model for the perturbations and by specifying a
process model for the flux-linkage as a function of current. The
choice of both models is largely application dependent.

As with most trade-offs, it is a question of accuracy vs. simplicity.
For example, let the process model be the non-saturating SRM,

)()(kiLk a=φ (53)

Further assume that the errors in voltage, current, and resistance
are each constant,








=
=
=

RkR

iki

vkv

δδ
δδ
δδ

)(

)(

)(

(54)

Substituting (54) into (52) gives,

[] [] 









⋅−−−+










⋅−= ∑∑

==

TRkiRiiRvTRkikvN
N

k
j

N

k
jj

11

)()()()()(ˆ δδδδδφ (55)

where the initial phase flux is known to equal 0. If the first
summation on the right-hand side of (55) represents the true value
of flux-linked given by our process model (53) and we assume in
the second summation that i j(k) = i j(N), for all k, then (55) can be
rewritten in the more convenient vector form,

xH T
jj k =)(φ̂ (56)

SPRA420

60 Developing an SRM Drive System Using the TMS320F240

where,















=

NT

NTNi

Ni

j

j

j)(

)(

H , and
















−−
−=

)(RiiRv

R

La

δδδδ
δx , and j = 1,…,n.

Solutions to (56) are well known. Given n linearly independent
measurements (n ≥ 3), a technique such as least squares or
Kalman filtering can be used to determine the coefficients of x.

Although this estimation approach extends to more sophisticated
models, for simplicity, in this example, we assume that the
process model is given by (53), that the voltage and current
perturbations are constants , and that the perturbation of phase

resistance is zero. Thus, 







=

NT

Ni j
j

)(
H , and 








−

=
)(iRv

La

δδ
x .

The coefficients of x were found using a least squares method.
This solution can be given by,

∑∑

∑∑

∑∑∑

==

==

===

−=













−

























−

=

n

j

j
a

n

j

j

n

j

j

n

j

j

n

j

j

n

j

j

n

j

jj

a

i
n

L

n
iRv

iin

iin

L

11

2

11

2

111

ˆ1
)-(

 ,

ˆˆ

φδδ

φφ

(57)

Because these calculations are performed only during the
initialization phase, processing time is not of overwhelming
concern. Thus, we used floating-point arithmetic and the library
routines found in RTS.LIB in the implementation of (57).

Flux Estimation

As described above, flux is estimated using a discretized version
of Faraday’s law, such as (45). Since during the calibration routine

we estimated an equivalent bias term,
N

iRv
b

δδ −= , this information

is used to improve the flux estimate. The flux estimation equation
is of the form,

()[] TbRlilvk
k

l

⋅−−=∑
=1

)()()(φ̂ (58)

SPRA420

Developing an SRM Drive System Using the TMS320F240 61

Rewriting (58) in terms of the summation of three delta-flux
values, multiplying through by 100, and dividing through by the
sampling period, T, yields

()∑
=

−∆+∆×=× k

l

b
T

k

1
21100

)(ˆ100 φφφ
(59)

where Rlilv)(and)(21 =∆=∆ φφ .

Because the SRM is controlled using a PWM scheme, the
instantaneous phase voltage, v, is determined by multiplying the
DC bus voltage by the ratio of the commanded pulse width to the
PWM period. Thus,

ratio)duty (%VBUS 1 ×=∆φ , (60)

where VBUS is assumed to be a constant in this example. In the
software, the duty ratio command is contained in the variable
SRM.dutyRatio[phase] and is scaled such that 100% = 999. For

∆φ1 to have units of
(sec)

sec)-(V

T
, (60) must be implemented as

999
 1

tio[phase]SRM.dutyRaVBUS×=∆φ (61)

and because division by 999 is not readily accomplished, the
constant VBUS is rescaled such that,

1024

1

tio[phase]SRM.dutyRa VBUS' ×=∆φ (62)

where VBUS’ = 1.025*VBUS. For Vbus = 170 V as described in
Table 1, the VBUS constant defined in SL_CONST.H must be
174.

In calculating ∆φ2, the constant R_PHASE is the phase resistance
in ohms, and the SRM phase current is contained in the variable
SRM.iFB[phase] and scaled such that 1 Ampere = 239.6 bits. For

∆φ2 to have units of
(sec)

sec)-(V

T
, the calculation of ∆φ2 must be

implemented as

239.6
 2

ase]SRM.iFB[phR_PHASE×=∆φ (63)

SPRA420

62 Developing an SRM Drive System Using the TMS320F240

which can be implemented with Q16 scaling, as

65536

273

 ase]SRM.iFB[phR_PHASE ××=∆ 2φ (64)

Multiplying the delta-flux terms by 100 provides an improved
scaling for the parameter estimation algorithm, yielding integer
estimates La and b, with greater resolution and accuracy.

The flux estimate integration is implemented using double
precision arithmetic as follows:

int phase;
long df1, df2; /* delta-flux 1 and 2*/
int temp1, temp2;
long dflux;

phase = anSRM->Active;

/*--------------------------------------*/
/* update flux linkage estimate */
/*--------------------------------------*/
df1 = VBUS * anSRM->dutyRatio[phase] + anSRM->df1_remainder;
anSRM->df1_remainder = df1 & 0x3ff;
temp1 = (int) (df1 >> 10);
df2 = R_PHASE * anSRM->iFB[phase] * 273 + anSRM->df2_remainder;
anSRM->df2_remainder = df2 & 0xffff;
temp2 = (int) (df2 >> 16);
dflux = 100*(temp1-temp2) - anSRM->bias[phase];

anSRM->fluxEstimate[phase] = anSRM->fluxEstimate[phase] + dflux;

if (anSRM->fluxEstimate[phase] < anSRM->minFlux) {
anSRM->fluxEstimate[phase] = anSRM->minFlux;

}

During calibration, the bias term is zero and the minimum flux limit
is a large negative number. Upon completion of the calibration
routine and the parameter estimation, the bias terms are defined
and the minimum flux limit is set to zero.

SPRA420

Developing an SRM Drive System Using the TMS320F240 63

Current Controller

The current controller used for the position sensorless SRM drive
is very similar to that used for the SRM drive with the position
sensor and is described in Section 4.2.3. The software differs in
this case only in that it allows only a single phase to be active at a
time, and the flux estimation algorithm is executed during the
current loop algorithm. The linear analysis is exactly the same as
the SRM drive using a position sensor. Following that procedure
the phase loss due to the ZOH sampling at 370 Hz can be
calculated as,

$1.11rad 194.0)103.83(3702 6 ==×××= −πθ loss (65)

Assuming that the processing delay is equal to 50% of a loop
cycle, or another 83.3 µsec, then the net effect of digital
implementation yields about 22° of phase loss at 370 Hz. When
combined with the 90° due to the motor pole, the phase loss
through the loop is approximately 112°, at 370 Hz. If the loop gain,
K, is chosen such that the 0 dB point of the open-loop magnitude
occurs at 370 Hz, then the resulting phase margin in the loop will
be about 68°. This amount of phase margin provides a very stable
loop design. The DC gain of the loop is given by,

K V K

P R
K

bus fb⋅ ⋅ ⋅
⋅ ⋅

=
1023

5
5092. (66)

which when written in decibels is equal to,

)(log201.14gain DC 10 KdB+= (67)

For frequencies where ω > (R/L), the magnitude of the loop
response is equal to,

G dB K
R L

() . log ()ω
ω

= + − ×






141 20 210 (68)

Setting the left-hand side of (68) to 0 dB, while ω = 2π(370) rad/s,
and solving for K, yields the value of K which insures the desired
open-loop crossover point for the current loop. In this case K =
2.8.

SPRA420

64 Developing an SRM Drive System Using the TMS320F240

The current loop gain is set using the ILOOP_GAIN constant in
the file SL_CONST.H. For this value, the Q3 scaling is used, thus
setting ILOOP_GAIN = 22 results in K = 2.75, which is sufficiently
close to the desired value of 2.8.

Commutation

The commutation algorithm is outlined in the flowchart diagram of
Figure 29.

SPRA420

Developing an SRM Drive System Using the TMS320F240 65

Figure 29. SRM Position Sensorless Commutation Algorithm Flowchart

from timer ISR

return

convert torque cmd to
current command

YES

YES

NO

NO

measured
 current >

 minimum ?

?)(ˆ SWk φφ >

calculate switching flux:

)]([)(kigkSW ×= αφ

A
B

C
Commutate

•switch A/D input mux
•reset flux integrator
•switch low-side FET
•initiate new velocity estimate

This algorithm is executed at each occurrence of the timer ISR.

The motor is commutated when the estimated phase flux equals
of exceeds the switching flux,

)]([)]([)(ˆ kigkik ×> αφ (69)

SPRA420

66 Developing an SRM Drive System Using the TMS320F240

Clearly the selection of α has significant impact on the
performance of the SRM. Choosing α is entirely analogous to
choosing conduction angles when designing a commutation
strategy using position feedback. As α approaches unity, the
switching point for a phase moves in such a way as to retard the
turn-on of the next phase and the turn-off of the active phase.
Likewise, as α approaches zero, the turn-on of the next phase
advances. Because α provides only a single degree of freedom,
the dwell angle effectively stays constant, unlike conventional
controllers where both turn-on and dwell angles are adjusted. This
is a limitation of the approach. Conceivably a more complicated
approach allowing multiple phases to conduct simultaneously
could be developed based on the techniques described in this
report.

For best performance, the choice of α should consider both the
desired phase current and the shaft speed of the motor, much in
the same way that these quantities are used to implement phase
advance and variable dwell angle control in conventional SRM
commutation strategies. Thus, more generally, the commutation
equation is written as,

)(),()(ˆ igik cmd ×> ωαφ (70)

Commutation is restricted to occur only when the measured phase
current exceeds a minimum threshold. As can be seen in Figure
22, there is considerable loss of sensitivity in estimating position
from flux when the phase current is small. In this circumstance,
small errors in current translate to large errors in position, and
consequently errors in the desired switching instant. This is a
second limitation of this type of position sensorless commutation
scheme. To help guard against this problem, the threshold is
used. The limitation makes this commutation scheme most
suitable for applications where the motor naturally operates under
loaded conditions, like fans.

In this example, a constant value of α = 0.625 was chosen. Using
the Q3 scaling, ALPHA = 5 as defined in the file SL_CONST.H

Velocity Estimation

Velocity is estimated by counting the number of times that the
timer ISR is executed, between commutation decisions. At each
commutation, velocity is calculated according to the equation,

�ω θ θ
= =

⋅ ⋅∆
∆

∆
t

f

N
clk60

(71)

SPRA420

Developing an SRM Drive System Using the TMS320F240 67

where,

�ω = the velocity estimate (rpm)

∆θ = the distance between commutations (rev)

∆t = the time between edges (min)

N = the number of timer ISR executions between
commutations

fclk = the timer ISR execution frequency (Hz)

It can be shown that when instantaneous velocity is estimated by
(71) that the quantization of a velocity estimate is given by

Q
d

dN fclk
= = ⋅ ⋅

�ω ω
θ

2

60 ∆ (72)

and, Q is the quantization of velocity (rpm). In this example,

RmN

1=∆θ is 1/24 revolution and fclk is equal to 6 kHz. For

example, at 1000 rpm the quantization is 66.7 rpm − which at
6.7% of the shaft speed is a fairly considerable amount. Although
filtering of the instantaneous estimates can significantly smooth
the velocity estimation, the filter bandwidth also serves to limit the
achievable velocity loop bandwidth.

Applications that require fast dynamic response along with good
speed accuracy are not well-suited for this type of approach.
Again, applications like fans and blowers are best suited for this
type of scheme.

SPRA420

68 Developing an SRM Drive System Using the TMS320F240

The instantaneous velocity estimate is calculated using double
precision as follows:

DWORD sum_cnt;
int inst_velocity;

if (anSRM->delta_count > 7) { /* protect from divide by 0 and */
 /* estimate out of range */

/*---*/
/* apply velocity = delta_theta/delta_time algorithm */
/*---*/
sum_cnt = K_VELOCITY_EST/anSRM->delta_count;
inst_velocity = ((int) sum_cnt);
}

Here, K_VELOCITY_EST is a constant that incorporates ∆θ and
units so that the instantaneous velocity estimate has units of (rpm
× 10). This constant is calculated by,

10
(min)

(sec) 60

(deg) 360

(rev) 1

(sec)

(cnts) 6000
 (deg) 15 _ESTK_VELOCITY ××××= (73)

To smooth the velocity estimate for quantization a low pass, IIR
filter is used. The IIR filtering is implemented,

/*---*/
/* IIR filter for smoothing velocity estimate*/
/*---*/
filt_velocity = (BETA * anSRM->wEst_10xrpm)

+ (ONE_MINUS_BETA * inst_velocity);
anSRM->wEst_10xrpm = (int) (filt_velocity >> 4);

The filter coefficient, β, is chosen equal to 0.9375, [BETA = 15
(Q4)]. Let β approach zero for a higher bandwidth velocity
estimate (less smoothing, more noise) and let β approach one for
more smoothing, less noise, and lower bandwidth. Here, because
of the relatively large amount of quantization in the velocity
estimate, β was chosen near 1.0.

SPRA420

Developing an SRM Drive System Using the TMS320F240 69

Velocity Controller

The velocity controller used for the position sensorless SRM drive
is very similar to that used for the SRM drive with the position
sensor and described in Velocity Controller under the Example -
SRM Drive With Position Feedback section above. Speed is
regulated in a closed-loop manner, by comparing the desired shaft
velocity to the estimated shaft velocity and then compensating the
error. A PI (proportional plus integral) control action is used for the
velocity loop compensation, to drive steady-state velocity error is
zero. The PI coefficients are determined using linear analysis.

Figure 30 shows a simplified model of the velocity loop, where the
coefficient, γ, having units of (rad/s)/A, is a non-linear quantity,
including the shaft/load inertia and the instantaneous torque
constant of the SRM.

Figure 30. Simplified Block Diagram of the SRM Velocity Loop Using PI Control

A/D
Gain

SRMPWM
Gain

Feedback
 Gain

Current
 Loop
Gain

V iicmd

ifb

1/R

(L/R)s + 1

K fb

K
Vdc

P

1023

5

1- e-sT

s

ZOH

γ
s

1- e-sT*

s

Κv(s + a)
s

ZOH

ωcmd ω

Velocity Loop Algorithm

*

*

ln

ln

T
s

T
β

β

−

−

IIR Filter

ω̂

In the figure, Kv controls the loop gain and ‘a’ is the radian
frequency of the PI zero.

The non-linearity in γ is due to the non-linear torque/current
relationship of the SRM. Thus, the open-loop gain of the velocity
loop will vary, approximately, as current squared. The IIR filter,
which has a z-transform given by,

SPRA420

70 Developing an SRM Drive System Using the TMS320F240

β
β

−
−

=
z

z
zH

)1(
)((74)

is modeled in the Laplace domain as shown in Figure 30.

An interesting feature of the speed loop is that although the
velocity loop update rate is a fixed-frequency of 1.2 kHz, the
feedback, which is provided at each phase commutation, occurs
at a variable rate. This feedback frequency, is a function of rotor
speed and can be given by,

*

1
)rpmin speed(4.0(Hz)

T
fsamp =×= (75)

This results in an effective variable time delay in the velocity loop,
due to the zero-order hold, and also makes the dynamics of the
IIR filter, used for smoothing the velocity estimate, variable.

Using the information in Table 1 and Figure 30 it is possible to
obtain open-loop frequency response plots (see Figure 31) for the
velocity loop, independent of γ.

Figure 31. Open-Loop Frequency Response of SRM Velocity Loop at Several
Motor Speeds, for a = 0.293 rad/s

10
-2

10
0

10
2

10
-2

10
0

10
2

-250

-200

-150

-100

frequency (Hz)

m
ag

ni
tu

de
ph

as
e

(d
eg

) 300 rpm

600 rpm

1200 rpm

SPRA420

Developing an SRM Drive System Using the TMS320F240 71

The variable loop dynamics as a function of rotor speed are
apparent. The absolute magnitude, as a function of frequency, is
unknown, however the shape of the magnitude and the phase are
correct. From Figure 30, clearly the desired open-loop crossover
frequency is in the 0.2-1.0 Hz range. By moving a about 0.293
rad/s, the bandwidth vs. stability margin tradeoffs can be made. If
the load inertia and motor torque constant information are known
(i.e. γ known), then Kv can be determined analytically; otherwise,
the velocity loop gain is set experimentally.

The velocity control loop compensation algorithm is implemented
as:

/*-------------------------*/
/* calculate error signal */
/*-------------------------*/
speed_error = anSRM->wDes_10xrpm - anSRM->wEst_10xrpm;

/*--*/
/* reduce loop bandwidth at low shaft speed */
/*--*/
if (anSRM->wEst_10xrpm < SPEED_THRESHOLD) {

speed_error = speed_error >> 2;
}

/*-------------------------*/
/* integrate error */
/*-------------------------*/
anSRM->integral_speed_error = anSRM->integral_speed_error
+ (long)speed_error;

/*-------------------------*/
/* apply integrator limit */
/*-------------------------*/
if (anSRM->integral_speed_error > INTEGRAL_LIMIT) {

anSRM->integral_speed_error = INTEGRAL_LIMIT;
}
if (anSRM->integral_speed_error < -INTEGRAL_LIMIT) {

anSRM->integral_speed_error = -INTEGRAL_LIMIT;
}

/*-------------------------*/
/* PI filter */
/*-------------------------*/
integral_error = (int) ((KI*anSRM->integral_speed_error) >> 14);
anSRM->desiredTorque = ((KP*speed_error) >> 2) + integral_error;

/*---------------------------------*/
/* insure a minimum phase current */
/*---------------------------------*/
if (anSRM->desiredTorque < MIN_TORQUE_COMMAND) {

anSRM->desiredTorque = MIN_TORQUE_COMMAND;

}

SPRA420

72 Developing an SRM Drive System Using the TMS320F240

This implements a PI compensator, with integrator limits, of the
form,





×=

=
⇒

+
=+

zKK

KK

s

zsK

s

K
K

vI

vpvI
P

)(
(76)

Through experimentation, it was determined that Kv = 0.25,
provided satisfactory performance. In the software implementation
of the integrator, the multiplication by ∆t is not performed. Thus,
this factor is carried implicitly in KI. For z = 0.293 rad/s and ∆t =
1/1200 sec, KI = 0.073 (≈ KI = 1 scaled Q14×1200). The integrator
limit value, INTEGRAL_LIMIT, is calculated such that,

1000
2

IMITINTEGRAL_L KI
14

≤× is satisfied. To add stability to the loop

during the motor startup, the loop gain is reduced by a factor of 4,
while the motor accelerates through about 400 rpm. Also, to help
avoid the problems described earlier with this sensorless
commutation approach at low levels of phase current, the torque
command, which is the velocity loop output, is limited to some
minimum threshold.

SPRA420

Developing an SRM Drive System Using the TMS320F240 73

References
Anderson, B. and J. Moore, Optimal Filtering, Prentice-Hall Publishing,

Englewood Cliffs, NJ, 1979.

Becerra, R., M. Ehsani, and T. J. E. Miller, “Commutation of SR Motors,”
IEEE Trans. Power Electronics, Vol. 8, pp. 257-262, July
1993.

Clemente, S. and A. Dubhashi, “HV Floating MOS-Gate Driver IC,”
International Rectifier application note AN-978A,
International Rectifier, El Segundo, CA, 1990.

Husain, I. and M. Ehsani, " Torque Ripple Minimization in Switched
Reluctance Motor Drives by PWM Current Control,"
Proc. APEC’94, 1994.

Ilic-Spong, M., T. J. E. Miller, S. R. MacMinn, and J. S. Thorp,
“Instantaneous Torque Control of Electric Motor Drives,”
IEEE Trans. Power Electronics, Vol. 2, Jan. 1987.

Kjaer, P. C., J. Gribble, and T. J. E. Miller, “High-Grade Control of
Switched Reluctance Machines,” IEEE Trans. Industry
Electronics, vol. 33, Nov. 1997.

Lewis, F. Applied Optimal Control & Estimation, Prentic Hall Publishing,
Englewood Cliffs, NJ, 1992.

Lyons, J., S. MacMinn, and M. Preston, “Flux/Current Methods for SRM
Rotor Position Estimation,” IEEE IAS Annual Meeting
Conf. Record, 1991.

Miller , T. J. E. (ed.), “Switched Reluctance Motor Drives,” Intertec
Communications Inc., Ventura, CA, 1988.

Miller, T. J. E., “Switched Reluctance Motors and Their Control,” Magna
Physics Publishing, Hillsboro, OH, and Oxford, 1993.

Ray, W. F. and I. H. Al-Bahadly, “Sensorless Methods for Determining
the Rotor Position of Switched Reluctance Motors,”
Proc. EPE Conf., Vol. 6, 1993.

Vukosavic, S. and V. Stfanovic, “SRM Inverter Topologies: A
Comparative Evaluation,” IEEE IAS Annual Meeting
Conf. Record, 1990.

SPRA420

74 Developing an SRM Drive System Using the TMS320F240

Appendix A. Software Listings for a TMS320F240-Based
SRM Drive With Position Sensor

This appendix contains the software to implement an SRM drive
using a slotted disk type position sensor for a TMS320F240 DSP.

File Major Modules Description

TYPEDEFS.H header file – data type definitions
C240.H header file – C240 register definitions

CONSTANT.H header file – SRM constant defintions
SRM.H header file – SRM variable declarations

MAIN.C main()
c_int3()
c_int4()

supervisory program
timer ISR
capture ISR

SRM.C Time_Update_Position()
Msmt_Update_Position()

Msmt_Update_Velocity()

Commutation_Algorithm()

velocityController()

currentController()

time update algorithm for position estimation
measurement update algorithm for position
estimation

velocity estimation algorithm
SRM fixed-dwell, variable turn-on
commutation algorithm
shaft velocity loop compensation algorithm

phase current loop compensation algorithm

EVMGR.C modules for event manager initialization and
operating the event manager peripherials

VECTORS.ASM interrupt vectors
LINK.CMD linker command file

SPRA420

Developing an SRM Drive System Using the TMS320F240 75

/***
* File: TYPEDEFS.H *
* TMS320x240 Test Bed Code *
* Texas Instruments, Inc. *
* Copyright (c) 1996 Texas Instruments Inc. *
* 11/05/96 Version 1.0 *
* Jeff Crankshaw *
***/
#ifndef TYPEDEFS_H
#define TYPEDEFS_H

#define FALSE 0
#define TRUE 1

typedef unsigned int WORD; /* 16-bit data */
typedef unsigned long DWORD; /* 32-bit data */
typedef volatile WORD * PORT;

#define STR(x) #x

#define OUTMAC(address,data) \
 asm(" LDPK _"STR(data)); \
 asm(" OUT _"STR(data) "," STR(address))

#define INMAC(address,data) \
 asm(" LDPK _"STR(data)); \
 asm(" IN _"STR(data) "," STR(address))

#define Int_Read(addr) * (int *) (addr)
#define Int_Write(addr,data) * (int *) (addr) = (data)

#endif /* _TYPEDEFS */

/***
* File: C240.H *
* TMS320x240 Test Bed Code *
* Texas Instruments, Inc. *
* Copyright (c) 1996 Texas Instruments Inc. *
* 11/05/96 Version 1.0 *
* Jeff Crankshaw *
* *
* TMS320C240 Peripheral Register Addresses *
* *
***/
#ifndef c240_h
#define c240_h

#include "typedefs.h"

/*--*/
/* definitions of I/O space macros */
/*--*/
#define STR(x) #x

#define OUTMAC(address,data) \
 asm(" LDPK _"STR(data)); \
 asm(" OUT _"STR(data) "," STR(address))

#define INMAC(address,data) \
 asm(" LDPK _"STR(data)); \
 asm(" IN _"STR(data) "," STR(address))

#define LED_LOC 000ch /* F240 EVM I/O space location for LEDs */

SPRA420

76 Developing an SRM Drive System Using the TMS320F240

/*--*/
/* definitions of CPU core registers */
/*--*/
#define IMR_REG ((PORT)0x0004)
#define IFR_REG ((PORT)0x0006)

/*--*/
/* External Memory Interface Registers */
/*--*/
#define WSGR 0x0ffff
/* Wait State Generator Register */

/*--*/
/* System Module Registers */
/*--*/
#define SYSCR ((PORT)0x07018) /* System Module Control Register */
#define SYSSR ((PORT)0x0701A) /* System Module Status Register */
#define SYSIVR ((PORT)0x0701E) /* System Interrupt Vector Register */
#define XINT1_CR ((PORT)0x07070) /* Int1 (type A) Control reg */
#define NMI_CR ((PORT)0x07072) /* Non maskable Int (type A) Control reg */
#define XINT2_CR ((PORT)0x07078) /* Int2 (type C) Control reg */
#define XINT3_CR ((PORT)0x0707A) /* Int3 (type C) Control reg */
#define PDPINT_CR ((PORT)0x0742C) /* Power Drive Protection Int cntl reg */

/* System Interrupt Vector Register - Address offsets */
#define PHANTOM_INT_VECTOR 0x00
#define NMI_INT_VECTOR 0x02
#define XINT1_INT_VECTOR 0x01
#define XINT2_INT_VECTOR 0x11
#define XINT3_INT_VECTOR 0x1f
#define SPI_INT_VECTOR 0x05
#define SCI_RX_INT_VECTOR 0x06
#define SCI_TX_INT_VECTOR 0x07
#define RTI_INT_VECTOR 0x10
#define PDP_INT_VECTOR 0x20
#define EV_CMP1_INT_VECTOR 0x21
#define EV_CMP2_INT_VECTOR 0x22
#define EV_CMP3_INT_VECTOR 0x23
#define EV_SCMP1_INT_VECTOR 0x24
#define EV_SCMP2_INT_VECTOR 0x25
#define EV_SCMP3_INT_VECTOR 0x26
#define EV_T1PER_INT_VECTOR 0x27
#define EV_T1CMP_INT_VECTOR 0x28
#define EV_T1UF_INT_VECTOR 0x29
#define EV_T1OF_INT_VECTOR 0x2a
#define EV_T2PER_INT_VECTOR 0x2b
#define EV_T2CMP_INT_VECTOR 0x2c
#define EV_T2UF_INT_VECTOR 0x2d
#define EV_T2OF_INT_VECTOR 0x2e
#define EV_T3PER_INT_VECTOR 0x2f
#define EV_T3CMP_INT_VECTOR 0x30
#define EV_T3UF_INT_VECTOR 0x31
#define EV_T3OF_INT_VECTOR 0x32
#define EV_CAP1_INT_VECTOR 0x33
#define EV_CAP2_INT_VECTOR 0x34
#define EV_CAP3_INT_VECTOR 0x35
#define EV_CAP4_INT_VECTOR 0x36
#define AC2_INT_VECTOR 0x04

SPRA420

Developing an SRM Drive System Using the TMS320F240 77

/*--*/
/* Digital I/O Registers */
/*--*/
#define OCRA ((PORT)0x07090) /* Output Control Reg A */
#define OCRB ((PORT)0x07092) /* Output Control Reg B */
#define PADATDIR ((PORT)0x07098) /* I/O port A Data & Direction reg. */
#define PBDATDIR ((PORT)0x0709A) /* I/O port B Data & Direction reg. */
#define PCDATDIR ((PORT)0x0709C) /* I/O port C Data & Direction reg. */

/*---*/
/* Watch-Dog(WD) / Real Time Int(RTI) / Phase Lock Loop(PLL) Registers */
/*---*/
#define RTICNTR ((PORT)0x07021) /* RTI Counter reg */
#define WDTCNTR ((PORT)0x07023) /* WD Counter reg */
#define WDTKEY ((PORT)0x07025) /* WD Key reg */
#define RTICR ((PORT)0x07027) /* RTI Control reg */
#define WDCR ((PORT)0x07029) /* WD Control reg */
#define CKCR0 ((PORT)0x0702B) /* PLL control reg 1 */
#define CKCR1 ((PORT)0x0702D) /* PLL control reg 2 */

/*--*/
/* Analog-to-Digital Converter(ADC) registers */
/*--*/
#define ADCTRL1 ((PORT)0x07032) /* ADC Control & Status reg */
#define ADCTRL2 ((PORT)0x07034) /* ADC Configuration reg */
#define ADCFIFO1 ((PORT)0x07036) /* ADC Channel 1 Result Data */
#define ADCFIFO2 ((PORT)0x07038) /* ADC Channel 2 Result Data */

/*--*/
/* Serial Peripheral Interface (SPI) Registers */
/*--*/
#define SPICCR ((PORT)0x07040) /* SPI Config Control Reg */
#define SPICTL ((PORT)0x07041) /* SPI Operation Control Reg */
#define SPISTS ((PORT)0x07042) /* SPI Status Reg */
#define SPIBRR ((PORT)0x07044) /* SPI Baud rate control reg */
#define SPIEMU ((PORT)0x07046) /* SPI Emulation buffer reg */
#define SPIBUF ((PORT)0x07047) /* SPI Serial Input buffer reg */
#define SPIDAT ((PORT)0x07049) /* SPI Serial Data reg */
#define SPIPC1 ((PORT)0x0704D) /* SPI Port control reg1 */
#define SPIPC2 ((PORT)0x0704E) /* SPI Port control reg2 */
#define SPIPRI ((PORT)0x0704F) /* SPI Priority control reg */

/*--*/
/* Serial Communications Interface (SCI) Registers */
/*--*/
#define SCICCR ((PORT)0x07050) /* SCI Comms Control Reg */
#define SCICTL1 ((PORT)0x07051) /* SCI Control Reg 1 */
#define SCIHBAUD ((PORT)0x07052) /* SCI Baud rate control */
#define SCILBAUD ((PORT)0x07053) /* SCI Baud rate control */
#define SCICTL2 ((PORT)0x07054) /* SCI Control Reg 2 */
#define SCIRXST ((PORT)0x07055) /* SCI Receive status reg */
#define SCIRXEMU ((PORT)0x07056) /* SCI EMU data buffer */
#define SCIRXBUF ((PORT)0x07057) /* SCI Receive data buffer */
#define SCITXBUF ((PORT)0x07059) /* SCI Transmit data buffer */
#define SCIPC1 ((PORT)0x0705D) /* SCI Port control reg1 */
#define SCIPC2 ((PORT)0x0705E) /* SCI Port control reg2 */
#define SCIPRI ((PORT)0x0705F) /* SCI Priority control reg */

SPRA420

78 Developing an SRM Drive System Using the TMS320F240

/*--*/
/* Event Manager (EV) Registers */
/*--*/
#define GPTCON ((PORT)0x07400) /* General Timer Controls */
#define T1CNT ((PORT)0x07401) /* T1 Counter Register */
#define T1CMP ((PORT)0x07402) /* T1 Compare Register */
#define T1PER ((PORT)0x07403) /* T1 Period Register */
#define T1CON ((PORT)0x07404) /* T1 Control Register */
#define T2CNT ((PORT)0x07405) /* T2 Counter Register */
#define T2CMP ((PORT)0x07406) /* T2 Compare Register */
#define T2PER ((PORT)0x07407) /* T2 Period Register */
#define T2CON ((PORT)0x07408) /* T2 Control Register */
#define T3CNT ((PORT)0x07409) /* T3 Counter Register */
#define T3CMP ((PORT)0x0740a) /* T3 Compare Register */
#define T3PER ((PORT)0x0740b) /* T3 Period Register */
#define T3CON ((PORT)0x0740c) /* T3 Control Register */
#define COMCON ((PORT)0x07411) /* Compare Unit Control */
#define ACTR ((PORT)0x07413) /* Full Compare Unit Output Action Ctrl */
#define SACTR ((PORT)0x07414) /* Simple Comp Unit Output Action Ctrl */
#define DBTCON ((PORT)0x07415) /* Dead Band Timer Control */
#define CMPR1 ((PORT)0x07417) /* Full Compare Channel 1 Threshold */
#define CMPR2 ((PORT)0x07418) /* Full Compare Channel 2 Threshold */
#define CMPR3 ((PORT)0x07419) /* Full Compare Channel 3 Threshold */
#define SCMPR1 ((PORT)0x0741a) /* Simple Comp Channel 1 Threshold */
#define SCMPR2 ((PORT)0x0741b) /* Simple Comp Channel 2 Threshold */
#define SCMPR3 ((PORT)0x0741c) /* Simple Comp Channel 3 Threshold */
#define CAPCON ((PORT)0x07420) /* Capture Unit Control */
#define CAPFIFO ((PORT)0x07422) /* FIFO1-4 Status Register */
#define FIFO1 ((PORT)0x07423) /* Capture Channel 1 FIFO Top */
#define FIFO2 ((PORT)0x07424) /* Capture Channel 2 FIFO Top */
#define FIFO3 ((PORT)0x07425) /* Capture Channel 3 FIFO Top */
#define FIFO4 ((PORT)0x07426) /* Capture Channel 4 FIFO Top */
#define IMRA ((PORT)0x0742c) /* Group A Interrupt Mask Register */
#define IMRB ((PORT)0x0742d) /* Group B Interrupt Mask Register */
#define IMRC ((PORT)0x0742e) /* Group C Interrupt Mask Register */
#define IFRA ((PORT)0x0742f) /* Group A Interrupt Flag Register */
#define IFRB ((PORT)0x07430) /* Group B Interrupt Flag Register */
#define IFRC ((PORT)0x07431) /* Group C Interrupt Flag Register */
#define IVRA ((PORT)0x07432) /* Group A Int. Vector Offset Register */
#define IVRB ((PORT)0x07433) /* Group B Int. Vector Offset Register */
#define IVRC ((PORT)0x07434) /* Group C Int. Vector Offset Register */

#endif

/*+++*/
/* */
/*File: CONSTANT.H */
/*Target Processor: TMS320F240 */
/*Compiler Version: */
/*Assembler Version: */
/*Created: 10/1/97 */
/* */
/*---*/
/* Constants for the SRM control algorithms */
/*+++*/

SPRA420

Developing an SRM Drive System Using the TMS320F240 79

/*--*/
/* clock frequencies and time related constants */
/*--*/
#define PWM_FREQ 20000 /* PWM frequency (Hz) */
#define SYSCLK_FREQ 20000000 /* DSP clock frequency (Hz) */
#define CPU_INT_FREQ 5000 /* timer ISR frequency (Hz) */
#define ONE_HALF_SECOND (CPU_INT_FREQ/2)

/*----------------------------------- */
/* current loop algorithm constants */
/*----------------------------------- */
#define ILOOP_GAIN 22 /* current loop gain: */

/* (Q3: gain = 2.75) */
#define ILIMIT 1023 /* current limit: (1023 bits = */

/* 5 V x 0.855 A/V = 4.273 A) */
#define MAXIMUM_DUTYRATIO 999 /* limit on the PWM duty cycle: */

/* 100 % = */
/* (SYSCLK_FREQ/PWM_FREQ - 1) */

/*---*/
/* velocity loop algorithm constants */
/*---*/
#define INTEGRAL_LIMIT 2793472 /* integrator limit */
#define KI 3 /* (Q13*1000): Ki = 0.366 */
#define KP 1 /* Q1: Kp = 0.5 */

/*--*/
/* position & velocity estimation algorithm constants */
/*--*/
#define K_POSITION_EST 1432
#define K1_VELOCITY_EST 281250000
#define K2_VELOCITY_EST 62500
#define ALPHA 7 /* Q3: alpha = 0.875 */
#define ONE_MINUS_ALPHA 1 /* Q3: 1-alpha = 0.125 */

/*---*/
/* motor geometry related */
/*---*/
#define NR 8 /* number of rotor poles */
#define NUMBER_OF_PHASES 3

/*--*/
/* Electrical Angles: 2*pi (rad) = 65535 */
/*--*/
#define PIBYSIX_16 5461
#define PIBYFOUR_16 8192
#define PIBYTHREE_16 10923
#define TWOPIBYTHREE_16 21845
#define THREEPIBYFOUR_16 24576
#define FIVEPIBYSIX_16 27307
#define PI_16 32768
#define FOURPIBYTHREE_16 43690
#define FIVEPIBYTHREE_16 54613
#define TWOPI_16 65535

/*+++*/
/* */
/*File: SRM.H */
/*Target Processor: TMS320F240 */
/*Compiler Version: */
/*Assembler Version: */
/*Created: 10/1/97 */
/* */
/*---*/
/* Variable declarations for the SRM control algorithm */
/*+++*/

#include "constant.h"
#include "typedefs.h"

/*--*/
/* position estimation state machine data structure */
/*--*/
typedef struct {

int state;
WORD position;

SPRA420

80 Developing an SRM Drive System Using the TMS320F240

int direction;
} state_machine;

/*--*/
/* SRM variables data structure: */
/*--*/
/*a2d_chan[i] -> sets which A/D pin is used for the ith phase current
/*desiredTorque -> torque command (output of velocity loop)
/*integral_speed_error -> velocity loop integrator for PI compensator
/*iDes[i] -> current command for the ith phase
/*capture_edge[i] -> timer #2 count value at the occurence of
/* the most recent ith capture
/*capture_delta[i][2] -> change in the timer #2 count value between
/* the occurences of the ith capture events. The two most
/* recent events are stored.
/*delta_count -> change in the software counter of the timer ISR
/* between occurences of any capture event.
/*wEst_10xrpm -> shaft velocity estimate (units of rpm*10)
/* wDes_10xrpm -> desired shaft velocity (units of rpm*10)
/* active[i] -> flag indicating whether the ith phase is ON (1 = on)
/* iFB[i] -> current feedback measurement for the ith phase
/* dutyRatio[i] -> commanded % duty ratio for the high-side FET of
/* the ith phase
/*position -> shaft position estimate (electrical degrees)
/* scaled: 2*pi (rad) = 65535 bits
/*position_state -> position state of the SRM (defined by opto-couplers)
/*shaft_direction -> direction which the shaft is rotating.
/*trans_lut[7][4] -> the position state machine
/*position_initial_guess[7] -> initial position guess, based on state
/*dp_remainder -> 16-bit remainder used in the position estimation alg
/*last_capture -> the most recent capture to occur
/*--*/
typedef struct {

int a2d_chan[NUMBER_OF_PHASES];
int desiredTorque;
long integral_speed_error;

 WORD iDes[NUMBER_OF_PHASES];
WORD capture_edge[NUMBER_OF_PHASES];
WORD capture_delta[NUMBER_OF_PHASES][2];
WORD delta_count;
int wEst_10xrpm;

 int wDes_10xrpm;
 int active[NUMBER_OF_PHASES];
 WORD iFB[NUMBER_OF_PHASES];
 int dutyRatio[NUMBER_OF_PHASES];

WORD position;
 int position_state;

int shaft_direction;
state_machine trans_lut[7][4];
WORD position_initial_guess[7];
long dp_remainder;
int last_capture;

} anSRM_struct;

SPRA420

Developing an SRM Drive System Using the TMS320F240 81

/*---*/
/*PROTOTYPE DEFINITIONS */
/*---*/
void eventmgr_init();
void initializeSRM(anSRM_struct *anSRM);
void Commutation_Algorithm(anSRM_struct *anSRM);
void Time_Update_Position(anSRM_struct *anSRM);
void velocityController(anSRM_struct *anSRM);
void currentController(anSRM_struct *anSRM);
void computePositionAndVelocity(anSRM_struct *anSRM);
void Msmt_Update_Velocity(anSRM_struct *anSRM, int mode);
void Msmt_Update_Position(anSRM_struct *anSRM);
void switch_lowside(int phaseactive);
void switch_mux(int adc1, int adc2);
void disable_interrupts();
void dsp_setup();
void initialize_counters_and_flags();
void enable_interrupts();
void start_background();
void check_for_stall();

/*+++
/*
/*File: MAIN.C
/*Target Processor: TMS320F240
/*Compiler Version: 6.6
/*Assembler Version: 6.6
/*Created: 10/31/97
/*
/*+++
/* This file is the main program for the control of an SRM drive with a
/*position sensor
/*++*/

/*--*/
/*INCLUDE FILES */
/*--*/
#include "c240.h"
#include "srm.h"

/*---*/
/*GLOBAL VARIABLE DECLARATIONS */
/*---*/
int count;
int slice;
int old_count;
int Update_Velocity;
int Toggle_LED;
int Msmt_Update;
anSRM_struct SRM;
int LEDvalue;

/*---*/
/*MAIN PROGRAM */
/*---*/

void main() {

disable_interrupts();
dsp_setup();
initializeSRM(&SRM);
eventmgr_init();
initialize_counters_and_flags();
enable_interrupts();

start_background();

}

/*+++ */
/*BACKGROUND TASKS */
/*--- */
/*Upon completion of the required initialization, the main
/*program starts the background task. The background is
/*simply an infinite loop. Time critical motor control
/*processing is done via interrupt service routines and lower

SPRA420

82 Developing an SRM Drive System Using the TMS320F240

/*priority processing is done in the background, when they
/*are needed. Two background operations are defined:
/*
/*1) Update_Velocity - when a capture interrupt occurs,
/* the ISR stores the capture data and then intiates
/* this task. The velocity update is done in
/* background, because it is doing a floating point
/* division.
/*2) Toggle_LED - this task toggles an LED on the EVM to
/* provide visual feedback to the user that the code
/* is running. This task is initiated at a fixed
/* rate set by the ONE_HALF_SECOND value.
/*
/*+++ */
void start_background()
{

while (1)

{
 /*----------------------*/
 /* Velocity update task */
 /*----------------------*/
 if (Update_Velocity) {

if (Update_Velocity == 1) { /* use capture data */
/* as time base */

 Msmt_Update_Velocity(&SRM,1);
}
else { /* else shaft is rotating too slowly, capture

 /* data may be in error by overflow.
 /* use count of timer ISR's between captures
 /* as time base. */

 Msmt_Update_Velocity(&SRM,2);
}
Update_Velocity = 0;

 }

 /*-----------------------*/
 /* Visual feedback task */
 /*-----------------------*/
 if (Toggle_LED) {

LEDvalue = -LEDvalue;
if (LEDvalue == 1) {

asm(" OUT 1, 000ch");
}
else {

 asm(" OUT 0, 000ch");
}
Toggle_LED = 0;
SRM.wDes_10xrpm = 6000; /* motor speed command units = (rpm x 10) */

/* just hard-coded here, but setup */
/* another background task to allow */
/* command from an external input */

 }

} /* infinite loop */

}
/*+++*/
/*TIMER ISR */
/*---*/
/*
/*This interrupt service routine is executed at each
/*occurence of the maskable CPU interrupt INT3. This CPU
/*interrupt corresponds to the event manager group B interrupts,
/*of which we enable only the timer #3 period interrupt, TPINT3.
/*The frequency, F, at which this routine is executed is specified
/*using the CPU_INT_FREQ parameter.
/*
/*The SRM control algorithms which are implemented during the
/*timer ISR are:
/*
/* 1. Current control (frequency = F)
/* 2. Rotor position estimation (frequency = F)
/* 3. Commutation (frequency = F/5)
/* 4. Velocity control (frequency = F/5)
/*

SPRA420

Developing an SRM Drive System Using the TMS320F240 83

/*Additionally, time can be measured (coarsely) by counting
/*the number of executions of this ISR, which runs at a
/*known fixed rate. This measure of time is used for several
/*reasons, including:
/*
/*- For precaution against over-current, a simple
/*test is made to determine if the rotor has stalled.
/*
/*- Also, the visual feedback task is initiated if the correct
/*amount of time has elapsed.
/*
/*+++*/
void c_int3()
{

IFR_REG = 0x0004; / clear interrupt flags */
*IFRB = 0xff;

currentController(&SRM); /* current loop algorithm */

if (Msmt_Update) { /* position estimation */
 Msmt_Update_Position(&SRM); /* if recent capture edge */
 Msmt_Update = 0; /* use this information */
}
else { /* else, propagate pos est */
 Time_Update_Position(&SRM); /* using algorithm */
}

check_for_stall();

count = count + 1; /* increment count */
slice = slice + 1; /* increment slicer */

if (slice == 1) {
 Commutation_Algorithm(&SRM); /* do commutation in the 1st */

} /* slice. */
else if (slice == 2) { /* velocity loop algorithm in */
 velocityController(&SRM); /* the 2nd */
}
else if (slice == 5) {
 slice = 0; /* reset slicer */
}

if (count == ONE_HALF_SECOND) { /* set flag for toggling the */
 Toggle_LED = 1; /* EVM LED, if time */
 count = 0;
}

}

/*+++ */
/*CAPTURE ISR */
/*--- */
/*
/*This interrupt service routine is executed at each
/*occurence of the maskable CPU interrupt INT4. This CPU
/*interrupt corresponds to the event manager group C interrupts,
/*of which we enable the three capture event interrupts,
/*CAPINT1-3. This ISR executes asynchronously and the
/*frequency of execution is dependent on the shaft speed
/*of the SRM.
/*
/*The ISR performs the following processing:
/*
/* clear interrupt flags;
/* determine which capture has occured;
/* read the appropriate capture FIFO register;
/* store capture data;
/* set flag for position update using measurement;
/* set flag for initiating velocity estimate
/* update in background;
/* return;
/*
/*+++*/
void c_int4()
{

int groupc_flags;
int capture;

SPRA420

84 Developing an SRM Drive System Using the TMS320F240

int n;
int delta_count;
WORD edge_time;

IFR_REG = 0x0008; / clear CPU interrupt flag */

/*--*/
/* determine which capture interrupt occured and read */
/* the appropriate FIFO */
/*--*/
groupc_flags = *IFRC; /* read event manger interrupt */

/* flag register */

if (groupc_flags & 0x1){ /* capture #1 */
 IFRC = 0xf9; / clear flag register */
 capture = 1; /* */
 edge_time = read_fifo(capture); /* read FIFO */

 }
else if (groupc_flags & 0x2) { /* capture #2 */
 *IFRC = 0xfa;
 capture = 2;
 edge_time = read_fifo(capture);
}
else if (groupc_flags & 0x4) { /* capture #3 */
 *IFRC = 0xfc;
 capture = 3;
 edge_time = read_fifo(capture);
}
else { /* not a valid capture */
 *IFRC = 0xff;
 capture = 0;
}

/*---*/
/* if a valid capture occured, store capture data and set flags */
/* foor position and velocity estimate updates. The most */
/* recent two time intervals between edges is saved */
/* to allow for some filtering of the velocity estimate. */
/* The number of timer ISR's which occur between capture */
/* interrupts is also checked. When this time exceeds a */
/* certain value, then the capture data could be in error */
/* by an overflow, so the lower resolution delta-time */
/* associated with the ISR count is used in the velocity */
/* estimate calculation. */
/*--- */
if (capture > 0) {

 SRM.last_capture = capture; /* save capture data */
 n = capture-1;
 SRM.capture_delta[n][1] = SRM.capture_delta[n][0];
 SRM.capture_delta[n][0] = edge_time - SRM.capture_edge[n];
 SRM.capture_edge[n] = edge_time;

 Msmt_Update = 1; /* position update flag */

 /*---*/
 /* Set flags & select time base for use with velocity update */
 /*---*/
 delta_count = count - old_count;
 old_count = count;
 if (delta_count < 0) delta_count = delta_count + ONE_HALF_SECOND;

 if (delta_count > 100) { /* low shaft speed use */
/* ISR counter */

SRM.delta_count = delta_count;
Update_Velocity = 2;

 }

 else { /* else, shaft speed ok */
/* use 1.25MHz clk */

SRM.delta_count = delta_count;
Update_Velocity = 1;

 }
}

}

/*+++ */

SPRA420

Developing an SRM Drive System Using the TMS320F240 85

/*UTILITY SUBROUTINES */
/*+++ */

/***/
void disable_interrupts()
{

asm(" SETC INTM");
}

***/
void dsp_setup() {

int temp;

/*------------------------*/
/* Disable watchdog timer */
/*------------------------*/
temp = *WDCR;
temp = temp | 0x68;
*WDCR = temp;

SPRA420

86 Developing an SRM Drive System Using the TMS320F240

/*--------------------------------------*/
/* initialize PLL module (10 MHz XTAL1) */
/*--------------------------------------*/
CKCR1 = 0xb1; / 20MHz CPUCLK = 10MHz crystal */

/* and 2x PLL mult ratio */
CKCR0 = 0xc3; / low-power mode 0, */

/* ACLK enabled, */
/* PLL enabled, */
/* SYSCLK=CPUCLK/2 */

*SYSCR = 0x40c0;

}

/**/
void initialize_counters_and_flags() {

count = 0; /* current timer ISR count */
slice = 0; /* ISR slice count */
old_count = 0; /* timer ISR count at last */

/* capture edge */
Toggle_LED = 0; /* flag for visual feedback */

/* background task */
LEDvalue = 1; /* current LED value */
Update_Velocity = 0; /* flag for velocity update */

/* background task */
Msmt_Update = 0; /* flag for mode of position */

/* estimate update */

}

/**/
void enable_interrupts() {

IFR_REG = 0xffff; / Clear pending interrupts */
*IFRA = 0xffff;
*IFRB = 0xffff;
*IFRC = 0xffff;
IMR_REG = 0x000c; / Enable CPU Interrupts: */

/* INT4 & INT3 */
IMRA = 0x0000; / Disable all event manager */

/* Group A interrupts */
IMRB = 0x0010; / Enable timer 3 period */

/* interrupt */
IMRC = 0x0007; / Enable CAP1-CAP3 interrupts*/
asm(" CLRC INTM"); /* Global interrupt enable */

}

/**/
void check_for_stall()
{

int delta_count;

/*---*/
/* The SRM is assumed to have stalled if the number of timer */
/* ISR's which are executed exceeds 1000. At F = 5 kHz */
/* this corresponds to roughly 6 rpm. If this condition */
/* is detected, the opto-coupler levels are read and the */
/* rotor position is re-initialized */
/*---*/
delta_count = count - old_count;
if (delta_count < 0) delta_count = delta_count + ONE_HALF_SECOND;
if (delta_count > 1000) {
 SRM.wEst_10xrpm = 0;
 SRM.position_state = *PBDATDIR & 0x7;

 SRM.position = SRM.position_initial_guess[SRM.position_state];
}

}

/*+++ */
/* File: SRM.C */
/*Target Processor: TMS320F240 */
/*Compiler Version: 6.6 */

SPRA420

Developing an SRM Drive System Using the TMS320F240 87

/*Assembler Version: 6.6 */
/*Created: 10/31/97 */
/*--- */
/* This file contains the algorithms for control of anSRM using */
/*a position sensor. The position sensor consists of a slotted */
/*disk and opto-couplers. */
/*+++ */

/*--- */
/*INCLUDE FILES */
/*-- */
#include "srm.h"
#include "c240.h"

/*+++ */
/*TIME UPDATE OF THE ROTOR POSITION ESTIMATE */
/*-- */
/* Between the capture events, which provide a shaft position */
/*measurement, position is estimated according to the equation */
/* */
/* theta(k) = theta(k-1) + w * delta_t; */
/* */
/*where theta = the position measurement (electrical angle) */
/* w = the current shaft velocity estimate */
/* delta_t = the execution frequency of the algorithm */
/* */
/*The arithmetic is performed using double precision. */
/* */
/*input: old position (where 2^16 = 2*pi radians) */
/* w (units of rpm * 10) */
/* K (constant incorporate delta_t and units) */
/* */
/*output: new position (where 2^16 = 2*pi radians) */
/* */
/*pseudo-code: dp = w * K; */
/* position = position + (dp * NR) */
/* */
/*+++ */
void Time_Update_Position(anSRM_struct *anSRM)
{

 long dp; /* delta-position in mechanical angle */
 int speed;
 int temp;

 if (anSRM->wEst_10xrpm > 0) {
 dp = anSRM->wEst_10xrpm * K_POSITION_EST + anSRM->dp_remainder;
 anSRM->dp_remainder = dp & 0xffff;

temp = (int) (dp >> 16);
 anSRM->position = anSRM->position + (temp * NR);
 }
 else {

speed = -anSRM->wEst_10xrpm;
 dp = speed * K_POSITION_EST + anSRM->dp_remainder;
 anSRM->dp_remainder = dp & 0xffff;

temp = (int) (dp >> 16);
 anSRM->position = anSRM->position - (temp * NR);
 }

} /* end Time_Update_Position */
/*+++ */
/*MEASUREMENT UPDATE OF THE ROTOR POSITION ESTIMATE */
/*--- */
/* At a capture interrupt, the rotor is at 1 of 6 positions. */
/* In between interrupts, the pickoff will be at 1 of six states, */
/* defined by the opto-couplers. The states are defined by [zyx] */
/* where: z = output of opto-coupler #3 */
/* y = output of opto-coupler #2 */
/* x = output of opto-coupler #1 */
/* */
/*State 2: 010 */
/*State 3: 011 */
/*State 1: 001 */
/*State 5: 101 */
/*State 4: 100 */

SPRA420

88 Developing an SRM Drive System Using the TMS320F240

/*State 6: 110 */
/* */
/*+++ */
void Msmt_Update_Position(anSRM_struct *anSRM)
{

 int old_state, new_state;
 int cap;

 /*-- */
 /* Based on capture and current state, get new state from the */
 /* state-machine look-up table */
 /*-- */
 cap = anSRM->last_capture;
 old_state = anSRM->position_state;
 new_state = anSRM->trans_lut[old_state][cap].state;

 /*--*/
 /* If transition is valid, update position and state */
 /*--*/
 if (new_state != 0) { /* valid transition, update data */

anSRM->position = anSRM->trans_lut[old_state][cap].position;
 anSRM->shaft_direction = anSRM->trans_lut[old_state][cap].direction;

anSRM->position_state = new_state;
 }

 else { /* else, not a valid transition, use opto-coupler */
 /* level & re-initialize position estimate */

anSRM->position_state = *PBDATDIR & 0x7;

 }

}

SPRA420

Developing an SRM Drive System Using the TMS320F240 89

/*++ */
/*VELOCITY ESTIMATION ALGORITHM */
/*--- */
/* This algorithm estimates the SRM shaft velocity. It is executed */
/*after each capture interrupt is received. If the shaft is */
/*moving fast enough, this routine is called with mode = 1 and */
/*the capture data is used. Otherwise, the # of timer ISRs */
/*which are executed between capture events is used in the */
/*velocity calculation. */
/* */
/*Velocity is calculated according to the equation: */
/* */
/* w = delta_theta / delta_t */
/* */
/*where delta_theta is known: */
/* (7.5 mech deg between each capture) */
/* (22.5 mech deg between the same capture) */
/*and delta_t is the measured number of clock cycles. */
/* */
/*The algorithm is implemented in double precision and is of */
/*the form: */
/* w = Kx_VELOCITY_EST/count */
/* */
/*where the constant Kx_VELOCITY_ESTIMATE (x=1,2) incorporates */
/*delta_theta and other units so that */
/*w has units of (rpm * 10). */
/* */
/*+++ */
void Msmt_Update_Velocity(anSRM_struct *anSRM, int mode)
{
 DWORD a1,a2,a3,a4,a5,a6;
 DWORD sum_cnt;
 int inst_velocity;
 long filt_velocity;

 /*--- */
 /* Obtain instantaneous velocity estimate */
 /*--- */
 if (mode == 1) { /* use timer #2 as time base */

/*--*/
/* FIR filter for removing once per electrical cycle effects */
/*--*/

 a1 = (DWORD) anSRM->capture_delta[0][0];
 a2 = (DWORD) anSRM->capture_delta[0][1];
 a3 = (DWORD) anSRM->capture_delta[1][0];
 a4 = (DWORD) anSRM->capture_delta[1][1];
 a5 = (DWORD) anSRM->capture_delta[2][0];
 a6 = (DWORD) anSRM->capture_delta[2][1];

sum_cnt = a1+a2+a3+a4+a5+a6;

/*---*/
/* apply velocity = delta_theta/delta_time algorithm */
/*---*/
sum_cnt = K1_VELOCITY_EST/sum_cnt;
inst_velocity = ((int) sum_cnt) * anSRM->shaft_direction;

 }

 else { /* else, use timer ISR count as time base */

/*---*/
/* apply velocity = delta_theta/delta_time algorithm */
/*---*/
sum_cnt = K2_VELOCITY_EST/anSRM->delta_count;

 inst_velocity = ((int) sum_cnt) * anSRM->shaft_direction;
 }

 /*--- */
 /* IIR filter for smoothing velocity estimate */
 /*--- */
 filt_velocity = (ALPHA * anSRM->wEst_10xrpm)

 + (ONE_MINUS_ALPHA * inst_velocity);
 anSRM->wEst_10xrpm = (int) (filt_velocity >> 3);

} /* end, velocity estimation */

/*++ */

SPRA420

90 Developing an SRM Drive System Using the TMS320F240

/*COMMUTATION ALGORITHM */
/*-- */
/* A four quadrant commutation algorithm, using a fixed-dwell angle */
/* of 120 electrical degrees and a variable turn on angle. With */
/*a fixed dwell of 120 electrical degrees, only a single phase */
/*is active at any one time. The advance angle is calculated as */
/*a function of speed and desired current. */
/*++ */
void Commutation_Algorithm(anSRM_struct *anSRM)
{
 int phase;
 WORD electricalAngle;
 WORD angle;
 int channel;
 long advance;
 int whats_active;
 int desiredCurrent;
 int temp;

 /*---------------------------*/
 /* Advance angle calculation */
 /*---------------------------*/
 advance = (anSRM->wEst_10xrpm * anSRM->desiredTorque);
 advance = advance >> 9;

 /*---*/
 /* Offset for advance angle negative torque, if required */
 /*---*/
 if (anSRM->desiredTorque > 0) {

electricalAngle = anSRM->position + (int) advance;
desiredCurrent = anSRM->desiredTorque;

 }
 else {

electricalAngle = anSRM->position + PI_16 - (int) advance;
desiredCurrent = -anSRM->desiredTorque;

 }

 /*-------------------------------- */
 /* for each phase do ... */
 /*-------------------------------- */
 whats_active = 0x0;
 for (phase=0; phase< NUMBER_OF_PHASES; phase++) {

/*------------------------------*/
/* 120 degree offsets for phase */
/*------------------------------*/
angle = electricalAngle - phase * TWOPIBYTHREE_16;

/*---*/
/* turn phase on, if between desired angles and switch */
/* the mux on the A/D to measure the desired */
/* phase current */
/*---*/
if ((angle >= (PIBYSIX_16)) && (angle < (FIVEPIBYSIX_16))) {
 anSRM->active[phase] = 1;
 temp = 0x1 << phase;
 channel = anSRM->a2d_chan[phase];
 switch_mux(channel,channel+8);
 anSRM->iDes[phase] = desiredCurrent;
 if (anSRM->iDes[phase] > ILIMIT) anSRM->iDes[phase] = ILIMIT;
}
else {
 anSRM->active[phase] = 0;
 temp = 0;
 anSRM->iDes[phase] = 0;
}
whats_active = whats_active | temp;

 }

 /*------------------------------------*/
 /* switch low-side FETs, as required */
 /*------------------------------------*/
 switch_lowside(whats_active);

}

SPRA420

Developing an SRM Drive System Using the TMS320F240 91

/*++ */
/*VELOCITY CONTROL LOOP ALGORITHM */
/*-- */
/* The algorithm implements a PI compensator for the velocity */
/*control of the SRM. The PI filter limits the integrator */
/*to prevent windup */
/* */
/*++ */
void velocityController(anSRM_struct *anSRM)
{

 int speed_error;
 int integral_error;

 /*------------------------------*/
 /* calculate error signal */
 /*------------------------------*/
 speed_error = anSRM->wDes_10xrpm - anSRM->wEst_10xrpm;

 /*------------------------------*/
 /* integrate error */
 /*------------------------------*/
 anSRM->integral_speed_error = anSRM->integral_speed_error + (long)speed_error;

 /*------------------------------*/
 /* apply integrator limit */
 /*------------------------------*/

if (anSRM->integral_speed_error > INTEGRAL_LIMIT) {
anSRM->integral_speed_error = INTEGRAL_LIMIT;

 }
 if (anSRM->integral_speed_error < -INTEGRAL_LIMIT) {

anSRM->integral_speed_error = -INTEGRAL_LIMIT;
 }

 /*------------------------------*/
 /* PI filter */
 /*------------------------------*/
 integral_error = (int) ((KI*anSRM->integral_speed_error) >> 13);
 anSRM->desiredTorque = ((KP*speed_error) >> 1) + integral_error;

} /* end velocityController */

SPRA420

92 Developing an SRM Drive System Using the TMS320F240

/** */
/*CURRENT CONTROL LOOP ALGORITHM */
/*+++ */
void currentController(anSRM_struct *anSRM) {

 int phase;
 int ierr;

 for (phase=0; phase < NUMBER_OF_PHASES; phase++) {

/*--*/
/* for each active phase do ... */
/*--*/
if (anSRM->active[phase] > 0) {

 /*--------------------*/
 /* read A/D converter */
 /*--------------------*/
 anSRM->iFB[phase] = read_a2d(1);

 /*---------------------------*/
 /* calculate error signal */
 /*---------------------------*/
 ierr = anSRM->iDes[phase] - anSRM->iFB[phase];

 /*---------------------------*/
 /* current loop compensation */
 /*---------------------------*/

 anSRM->dutyRatio[phase] = ILOOP_GAIN * ierr;
 anSRM->dutyRatio[phase] = (anSRM->dutyRatio[phase] >> 3);

 /*------------------*/
 /* limit duty ratio */
 /*------------------*/
 if (anSRM->dutyRatio[phase] < 0) {

anSRM->dutyRatio[phase] = 0;
 }
 if (anSRM->dutyRatio[phase] > MAXIMUM_DUTYRATIO) {

anSRM->dutyRatio[phase] = MAXIMUM_DUTYRATIO;
 }

}

/*--*/
/* else, phase is not active */
/*--*/
else {
 anSRM->iFB[phase] = 0;
 anSRM->dutyRatio[phase] = 0;
}

 } /* end for loop */

 /*---------------------------------------*/
 /* output PWM signals to high-side FET's */
 /*---------------------------------------*/
 *CMPR1 = anSRM->dutyRatio[0];
 *CMPR2 = anSRM->dutyRatio[1];
 *CMPR3 = anSRM->dutyRatio[2];

} /* end currentController */

/** */
/*SRM ALGORITHM INITIALIZATION */
/*--- */
void initializeSRM(anSRM_struct *anSRM)
{

 int i,j;

 /*---*/
 /* define mux positions for current feedback of each phase */
 /*---*/
 anSRM->a2d_chan[0] = 1; /* phase A current on pin ADCIN1 */
 anSRM->a2d_chan[1] = 2; /* phase B current on pin ADCIN2 */
 anSRM->a2d_chan[2] = 3; /* phase C current on pin ADCIN3 */

SPRA420

Developing an SRM Drive System Using the TMS320F240 93

 /*-- */
 /* Define position estimation state machine. */
 /* */
 /* Given current state, i, and capture event, j, with */
 /* every transition (capture event), 3 parameters are defined: */
 /* 1. trans_lut[i][j].state = the new state */
 /* 2. trans_lut[i][j].position = the shaft position */
 /* 3. trans_lut[i][j].direction = the shaft direction */
 /*-- */

/*---*/
/* fill table with zeros. zeros will define illegal */
/* transitions */
/*---*/

 for (i=0; i<7; i++) {
for (j=0; j<4; j++) {

 anSRM->trans_lut[i][j].state = 0;
 anSRM->trans_lut[i][j].position = 0;
 anSRM->trans_lut[i][j].direction = 0;

}
 }

/*------------------------------*/
/* 'new-state' definitions */
/*------------------------------*/

 anSRM->trans_lut[1][2].state = 3;
 anSRM->trans_lut[1][3].state = 5;
 anSRM->trans_lut[2][1].state = 3;
 anSRM->trans_lut[2][3].state = 6;
 anSRM->trans_lut[3][1].state = 2;
 anSRM->trans_lut[3][2].state = 1;
 anSRM->trans_lut[4][1].state = 5;
 anSRM->trans_lut[4][2].state = 6;
 anSRM->trans_lut[5][1].state = 4;
 anSRM->trans_lut[5][3].state = 1;
 anSRM->trans_lut[6][2].state = 4;
 anSRM->trans_lut[6][3].state = 2;

/*--------------------------------------*/
/* 'shaft direction' definitions */
/*--------------------------------------*/

 anSRM->trans_lut[1][2].direction = -1;
 anSRM->trans_lut[1][3].direction = 1;
 anSRM->trans_lut[2][1].direction = 1;
 anSRM->trans_lut[2][3].direction = -1;
 anSRM->trans_lut[3][1].direction = -1;
 anSRM->trans_lut[3][2].direction = 1;
 anSRM->trans_lut[4][1].direction = -1;
 anSRM->trans_lut[4][2].direction = 1;
 anSRM->trans_lut[5][1].direction = 1;
 anSRM->trans_lut[5][3].direction = -1;
 anSRM->trans_lut[6][2].direction = -1;
 anSRM->trans_lut[6][3].direction = 1;

SPRA420

94 Developing an SRM Drive System Using the TMS320F240

/*--------------------------------------*/
/* 'shaft position' definitions */
/*--------------------------------------*/

 anSRM->trans_lut[1][2].position = TWOPIBYTHREE_16;
 anSRM->trans_lut[1][3].position = PI_16;
 anSRM->trans_lut[2][1].position = PIBYTHREE_16;
 anSRM->trans_lut[2][3].position = 0;
 anSRM->trans_lut[3][1].position = PIBYTHREE_16;
 anSRM->trans_lut[3][2].position = TWOPIBYTHREE_16;
 anSRM->trans_lut[4][1].position = FOURPIBYTHREE_16;
 anSRM->trans_lut[4][2].position = FIVEPIBYTHREE_16;
 anSRM->trans_lut[5][1].position = FOURPIBYTHREE_16;
 anSRM->trans_lut[5][3].position = PI_16;
 anSRM->trans_lut[6][2].position = FIVEPIBYTHREE_16;
 anSRM->trans_lut[6][3].position = 0;

 /*--- */
 /* define initial guesses for each state. The initial position */
 /* is assumed at the midpoint of each state */
 /*--- */
 anSRM->position_initial_guess[1] = TWOPIBYTHREE_16 + PIBYSIX_16;
 anSRM->position_initial_guess[2] = PIBYSIX_16;
 anSRM->position_initial_guess[3] = PIBYTHREE_16 + PIBYSIX_16;
 anSRM->position_initial_guess[4] = FOURPIBYTHREE_16 + PIBYSIX_16;
 anSRM->position_initial_guess[5] = PI_16 + PIBYSIX_16;
 anSRM->position_initial_guess[6] = FIVEPIBYTHREE_16 + PIBYSIX_16;

 /*--*/
 /* read opto-couplers and get initial position estimate */
 /*--*/
 anSRM->position_state = *PBDATDIR & 0x7;
 anSRM->position = anSRM->position_initial_guess[anSRM->position_state];

 /*-------------------------*/
 /* set initial conditions */
 /*-------------------------*/
 for(i = 0; i < NUMBER_OF_PHASES; i++) {

anSRM->iDes[i] = 0;
 anSRM->active[i] = 0;
 anSRM->iFB[i] = 0;

anSRM->capture_delta[i][0] = 65535;
anSRM->capture_delta[i][1] = 65535;

 }

 anSRM->wEst_10xrpm = 0;
 anSRM->shaft_direction = 0;
 anSRM->dp_remainder = 0;
 anSRM->integral_speed_error = 0;
 anSRM->wDes_10xrpm = 0;

}

/*+++
/*
/*File: EVMGR.C
/*Target Processor: TMS320F240
/*Compiler Version: 6.6
/*Assembler Version: 6.6
/*Created: 10/31/97
/*
/*+++
/* This file contains the routines for initializing and using the event
/* manager peripherials.
/*++*/

/*--- */
/*INCLUDE FILES */
/*--- */
#include "c240.h"
#include "constant.h"

SPRA420

Developing an SRM Drive System Using the TMS320F240 95

/*+++ */
/*EVENT MANAGER INITIALIZATION */
/*+++ */
/* Through appropriate programming of the event manager control
/*registers, this routine sets up the event manager so that:
/*
/*all timers run in the continuous up count mode
/*timer 1 provides the desired PWM frequency timebase
/*timer 2 counts at 1/16 of the CPUCLK and is used as the time
/* base for capture events. Prescaling prevents overflow
/* except at only low shaft speeds.
/*timer 3 provides the CPU interrupt
/*A/D conversions are synchronized with timer 3 period occurences
/*compare units are configured to the PWM mode
/*PWMs 1,3, and 5 (used for high-side switching) are active low
/*PWMs 2,4, and 6 (used for low-side switching) are forced hi/low
/*sets up shared pins as capture inputs and digital inputs for
/* interface with the opto-couplers
/*initiates continuous A/D conversions.
/*
/*--*/
/* GPTCON Initialization parameters
/* GPTCON = 0x1055
/*
/* xxx1 0000 0101 0101
/* ___---__---_-- __--
/* | | | | | | | |
/* (15-13) Read-only status bits ---------| | | | | | | |
/* (12-11) Start A/D on timer 3 period ------| | | | | | |
/* (10-9) No timer 2 event starts A/D --------| | | | | |
/* (8-7) No timer 1 event starts A/D -----------| | | | |
/* (6) Enable timer compares -------------------| | | |
/* (5-4) Timer 3 active low ------------------------| | |
/* (3-2) Timer 2 active low ---------------------------| |
/* (1-0) Timer 1 active low -----------------------------|
/*

/*--*/
/* T3CON Initialization parameters
/* T3CON = 0x9040
/*
/* 1001 0000 0100 0000
/* __----___ -_-- __-_
/* | | | || | | ||
/* (15-14) Stop on suspend --------------| | | || | | ||
/* (13-11) Continuous up-count mode --------| | || | | ||
/* (10-8) Clock prescaler = 1 -----------------| || | | ||
/* (7) Use own TENABLE bit --------------------|| | | ||
/* (6) Enable timer ---------------------------| | | ||
/* (5-4) Use internal clock source -----------------| | ||
/* (3-2) Reload at zero ------------------------------| ||
/* (1) disable timer compare -------------------------||
/* (0) Use own period register ------------------------|
/*
/*--*/
/* T2CON Initialization parameters
/* T2CON = 0x9440
/*
/* 1001 0100 0100 0000
/* __----___ -_-- __-_
/* | | | || | | ||
/* (15-14) Stop on suspend --------------| | | || | | ||
/* (13-11) Continuous up-count mode --------| | || | | ||
/* (10-8) Clock prescaler = 1/16 --------------| || | | ||
/* (7) Use own TENABLE bit --------------------|| | | ||
/* (6) Enable timer ---------------------------| | | ||
/* (5-4) Use internal clock source -----------------| | ||
/* (3-2) Reload at zero ------------------------------| ||
/* (1) disable timer compare -------------------------||
/* (0) Use own period register ------------------------|
/*
/*--*/
/* T1CON Initialization parameters
/* T1CON = 0x9040
/*
/* 1001 0000 x100 0000
/* __----___ -_-- __-_

SPRA420

96 Developing an SRM Drive System Using the TMS320F240

/* | | | || | | ||
/* (15-14) Stop on suspend --------------| | | || | | ||
/* (13-11) Continuous up-count mode --------| | || | | ||
/* (10-8) Clock prescaler = 1 -----------------| || | | ||
/* (7) Reserved on timer 1 --------------------|| | | ||
/* (6) Enable timer ---------------------------| | | ||
/* (5-4) Use internal clock source -----------------| | ||
/* (3-2) Reload at zero ------------------------------| ||
/* (1) Disable timer compare -------------------------||
/* (0) Use own period register ------------------------|
/*
/*--*/
/* COMCON Initialization parameters
/*
/* COMCON = 0x8207
/*
/* 1000 0010 xxxx x111
/* _--_ --_- -__---_-_
/* | || | || | | | |||
/* (15) Enable compares --------------| || | || | | | |||
/* (14-13) Reload compare at 0 ------------|| | || | | | |||
/* (12) Disable Space Vector PWM --------| | || | | | |||
/* (11-10) Reload ACTR at 0 ------------------| || | | | |||
/* (9) Enable full compare output pins -----|| | | | |||
/* (8) Hi-Z simple compare output pins ------| | | | |||
/* (7) Simple compare time base ---------------| | | |||
/* (6-5) Simple compare reload --------------------| | |||
/* (4-3) Simple compare SACTR reload ----------------| |||
/* (2) Compare #3 to PWM mode -----------------------|||
/* (1) Compare #2 to PWM mode ------------------------||
/* (0) Compare #1 to PWM mode -------------------------|
/*
/*--*/
/* ACTR Initialization parameters
/* ACTR = 0x0111
/*
/* xxxx 0001 0001 0001
/* ____ --__ --__ --__
/* | | | | | | |
/* (15-12) Space vector PWM related ------| | | | | | |
/* (11-10) PWM6 = Force Low ------------------| | | | | |
/* (9-8) PWM5 = Active Low --------------------| | | | |
/* (7-6) PWM4 = Force Low -----------------------| | | |
/* (5-4) PWM3 = Active Low ------------------------| | |
/* (3-2) PWM2 = Force Low ----------------------------| |
/* (1-0) PWM1 = Active Low ------------------------------|
/*
/*--*/
/* ADCTRL1 Initialization parameters
/* ADCTRL1 = 0x2c00
/*
/* 0010 110x 0000 0000
/* _-_- _-_- _--- ___-
/* |||| |||| | | | |
/* (15) Suspend - Soft ---------------|||| |||| | | | |
/* (14) Suspend - Free ----------------||| |||| | | | |
/* (13) Start A/D Conversions ----------|| |||| | | | |
/* (12) Disable Channel 1 ---------------| |||| | | | |
/* (11) Enable Channel 2 ------------------|||| | | | |
/* (10) Continuous conversion -------------||| | | | |
/* (9) Disable interrupt ------------------|| | | | |
/* (8) ADC Interrupt flag -------------------| | | | |
/* (7) Conversion status ----------------------| | | |
/* (6-4) ADC1 mux select --------------------------| | |
/* (3-1) ADC2 mux select ------------------------------| |
/* (0) Start conversion bit ---------------------------|
/*
/*+++*/
void eventmgr_init() {

WORD iperiod;

/*--*/
/* Initialize GP timer 3 to provide desired CPU interrupt */
/*--*/
iperiod = (SYSCLK_FREQ/CPU_INT_FREQ) - 1;

GPTCON = 0x1055; / Setup general-purpose control reg */

SPRA420

Developing an SRM Drive System Using the TMS320F240 97

T3PER = iperiod; / Load timer #2 period register */
T3CON = 0x9040; / Initialize timer #3 control register */

/*---*/
/* Initialize GP timer 1 to provide a 20 kHz time base for */
/* fixed frequency PWM generation */
/*---*/
iperiod = (SYSCLK_FREQ/PWM_FREQ) - 1;

T1PER = iperiod; / Load timer #1 period */
T1CON = 0x9040; / Initialize timer #1 control register */

/*---*/
/* Initialize GP timer 2 to provide time base for clocking */
/* capture events */
/*---*/
T2PER = 0xffff; / Load timer #2 period */
T2CON = 0x9440; / Initialize timer #2 control register */

/*-------------------------------------*/
/* Setup Compare units for PWM outputs */
/*-------------------------------------*/
ACTR = 0x0111; / Initialize action on output pins */
DBTCON = 0x0; / Disable deadband */
CMPR1 = 0x0; / Clear period registers */
*CMPR2 = 0x0;
*CMPR3 = 0x0;
COMCON = 0x0207; / Setup COMCON w/o enable */
COMCON = 0x8207; / Setup COMCON and enable */

/*-------------------*/
/* Setup shared pins */
/* ------------------*/
OCRA = 0x0; / pins IOPB0-IOPB7 & IOPA0-IOPA3 to I/O pins */
OCRB = 0xf1; / pins are: ADSOC, XF, /BIO, CAP1-CAP4 */
PBDATDIR = 0xf0f0; / inputs IOPB0-IOPB3 */

/* outputs IOPB4-IOPB7, set high */

/*---------------------*/
/* Setup capture units */
/*---------------------*/
CAPCON = 0x0; / reset capture control register */
CAPFIFO = 0xff; / Clear FIFO's */
CAPCON = 0xb0fc; / enable #1-3, use Timer2, both edges */

/*---------------------*/
/* Setup A/D converter */
/*---------------------*/
ADCTRL1 = 0x2c00; / Initialize A/D control register */
ADCTRL2 = 0x0403; / Clear FIFO's, Pre-scaler = 4 */

}

/**/
/*SWITCH A/D INPUT CHANNEL */
/*--*/
/* Each A/D converter unit has an 8:1 input multiplexer which
/* must be selected to the desired channel, prior to sampling.
/* The channel is selected by manipulating bits
/* of the ADCTRL1 control register
/*
/* inputs: adc1 = desired input channel for A/D #1
/* range: 0-7
/* adc2 = desired input channel for A/D #2
/* range: 8-15
/*outputs: none
/*
/*+++ */
void switch_mux(int adc1, int adc2)
{

WORD ctrl_word;

ctrl_word = 0x2c00; /* mask channel select bits */
ctrl_word = ctrl_word | (adc1 << 4); /* set ADC1 channel bits */
ctrl_word = ctrl_word | ((adc2-8) << 1); /* set ADC2 channel bits */

SPRA420

98 Developing an SRM Drive System Using the TMS320F240

*ADCTRL1 = ctrl_word;
*ADCTRL2 = 0x0403;

}

/** */
/*READ A/D FIFO REGISTER */
/*--- */
/* This routine is used to read the sampled A/D data from the
/*appropriate FIFO. The 10-bit A/D data is stored in the
/*FIFO in bits 15-6. A right shift of 6, limits the data
/*to the range 0-1023.
/*
/*inputs: a2d_chan = which FIFO to read
/* range: 1-2
/*outputs: inval = A/D data
/* range: 0-1023
/* 0 VDC = 0 bits
/* 5 VDC = 1023 bits
/*+++ */
WORD read_a2d(int a2d_chan)
{

WORD inval;

if (a2d_chan == 1) {
 inval = (*ADCFIFO1 >> 6) & 0x03ff;
}
else if (a2d_chan == 2) {
 inval = (*ADCFIFO2 >> 6) & 0x03ff;
}

return inval;
}

/***/
/*SWITCH LOW-SIDE MOSFETS */
/*-- */
/* The state of the low-side power MOSFETS is controlled by the
/*level on the PWM2, PWM4, and PWM6 output pins, for phases
/*A, B, and C, respectively. Active high logic is used,
/*but since the low-side switches are used for commutation
/*instead of PWM control, we just use the force-low or
/*force-high action options.
/*
/*inputs: phaseactive = bits 0,1, and 2 control
/* the state of the PWM2, PWM4, and
/* PWM6 output pins, respectively.
/*
/* (ex. phaseactive = 0x5 will force PWM2 &
/* PWM6 high, PWM4 low)
/*outputs: none
/*
/*+++ */
void switch_lowside(int phaseactive)
{

WORD action;

/*--*/
/* load action register and mask PWM2, PWM4, and PWM6 */
/* to force low */
/*--*/
action = *ACTR;
action = action & 0xf333;

/*---------------------------------------*/
/* Force hi PWM2 if phase0 (A) is active */
/*---------------------------------------*/
if (phaseactive & 0x1) {
 action = action | 0x000c;
}

/*---------------------------------------*/
/* Force hi PWM4 if phase1 (B) is active */
/*---------------------------------------*/
if (phaseactive & 0x2) {

SPRA420

Developing an SRM Drive System Using the TMS320F240 99

 action = action | 0x00c0;
}

/*---------------------------------------*/
/* Force hi PWM6 if phase2 (C) is active */
/*---------------------------------------*/
if (phaseactive & 0x4) {
 action = action | 0x0c00;
}

/*-----------------------------------*/
/* Write new word to action register */
/*-----------------------------------*/
*ACTR = action;

}

SPRA420

100 Developing an SRM Drive System Using the TMS320F240

/** */
/*READ CAPTURE FIFO REGISTERS */
/*--- */
/* This routine is used to read the data from the capture FIFO
/*registers.
/*
/*inputs: capture = which FIFO to read?
/* range = 1-3
/*outputs fifo_data =
/* range = 0-65535
/*
/*+++ */
WORD read_fifo(int capture)
{

WORD fifo_data;
int fifo_status;

if (capture == 1) {
 do {
 fifo_data = *FIFO1; /* read value */
 fifo_status = *CAPFIFO & 0x0300; /* read status register, mask bits */
 } while (fifo_status != 0);

 }
else if (capture == 2) {
 do {

 fifo_data = *FIFO2; /* read value */
 fifo_status = *CAPFIFO & 0x0c00; /* read status register, mask bits */
 } while (fifo_status != 0);
}
else if (capture == 3) {
 do {

 fifo_data = *FIFO3; /* read value */
 fifo_status = *CAPFIFO & 0x3000; /* read status register, mask bits */
 } while (fifo_status !=0);
}
else {
 fifo_data = 0xffff; /* error, not a valid capture */
}

return fifo_data;
}

++
* *
* File: VECTORS.ASM *
* Target Processor: TMS320F240 *
* Assembler Version: 6.6 *
* Created: 10/31/97 *
* *
--
* This file contains the interrupt vectors *
**

 .length 58
 .option T
 .option X

*** *
* ILLEGAL INTERRUPT ROUTINE *
*** *;

 .text
 .def _int_0

_int_0: B _int_0 ; ILLEGAL INTERRUPT SPIN

SPRA420

Developing an SRM Drive System Using the TMS320F240 101

*** *
* INTERRUPT VECTORS *
*** *

 .sect "VECTOR"
 .ref _c_int0

 .ref _c_int3
 .ref _c_int4

 B _c_int0 ; RESET
 B _int_0 ; INT1
 B _int_0 ; INT2
 B _c_int3 ; INT3
 B _c_int4 ; INT4
 B _int_0 ; INT5
 B _int_0 ; INT6
 B _int_0 ; Reserved
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;
 B _int_0 ; TRAP
 B _int_0 ; NMI
 B _int_0 ;
 B _int_0 ;
 B _int_0 ;

 .end

/* Linker command file for TMS320F240 EVM */

vectors.obj
evmgr.obj
srm.obj

-c /* use ROM autoinitialization model */
-m main.map
-o main.out
-l c:\2xxtools\rts2xx.lib

MEMORY
{
 PAGE 0: VECTORS: origin = 0x0000 length = 0x0040 /* EMIF */
 PAGE 0: CODE: origin = 0x0040 length = 0x1FC0 /* EMIF */
 PAGE 1: MMRS: origin = 0x0000 length = 0x0060 /* MMRS */
 B2: origin = 0x0060 length = 0x0020 /* DARAM */

 B0: origin = 0x0100 length = 0x0100 /* DARAM */
 B1: origin = 0x0300 length = 0x0100 /* DARAM */
 DATA: origin = 0xa000 length = 0x2000 /* EMIF */

}

SECTIONS
{
 .VECTOR > VECTORS PAGE 0
 .text > CODE PAGE 0
 .cinit > CODE PAGE 0
 .switch > CODE PAGE 0
 .mmrs > MMRS PAGE 1 /* Memory Mapped Registers */
 .data > DATA PAGE 1
 .bss > DATA PAGE 1
 .const > DATA PAGE 1
 .stack > DATA PAGE 1
 .sysmem > DATA PAGE 1

SPRA420

102 Developing an SRM Drive System Using the TMS320F240

Appendix B. Software Listings for a TMS320F240-Based
SRM Drive Without Position Sensor

This appendix contains the software to implement an SRM drive
without a position sensor using the TMS320F240 DSP.

The files below are used for both the position sensorless drive and
the drive using opto-couplers for position feedback. Their listings
can be found in Appendix A.

File Major Modules Description

TYPEDEFS.H header file – data type definitions
C240.H header file – C240 register definitions
EVMGR.C modules for event manager initialization and

operating the event manager peripherials

VECTORS.ASM interrupt vectors

Listings for these files are found in this Appendix.

File Major Modules Description

SL_CONST.H header file – SRM constant defintions
SL_SRM.H header file – SRM variable declarations

SL_MAIN.C main()
c_int3()

supervisory program
timer ISR

SL_SRM.C Sensorless_Commutation
()

Msmt_Update_Velocity()

velocityController()
currentController()

positing sensorless, single-quadrant SRM
commutation algorithm.

velocity estimation algorithm
shaft velocity loop compensation algorithm

phase current loop compensation algorithm

FLUX_EST.C estimateFluxLinkage()

leastSquaresFit()
get_alignedFlux()

update_flux_estimate()

training and calibration algorithm for
estimating the flux-linked vs. current
characterstics of the SRM at the aligned
position.
linear least squares fit algorithm.

using the estimated characteristics, given
measured current, this function returns the
flux-linked at the aligned position.
a discretized version of Faraday’s law used
to estimated the phase flux.

SL_LINK.CMD linker command file

SPRA420

Developing an SRM Drive System Using the TMS320F240 103

/*+++*/
/* */
/*File: SL_CONST.H */
/*Target Processor: TMS320F240 */
/*Compiler Version: */
/*Assembler Version: */
/*Created: 10/1/97 */
/* */
/*---*/
/* Constants for the SRM control algorithms */
/*+++*/

/*--*/
/* clock frequencies and time related constants */
/*--*/
#define PWM_FREQ 20000 /* PWM frequency (Hz) */
#define SYSCLK_FREQ 20000000 /* DSP clock frequency (Hz) */
#define CPU_INT_FREQ 6000 /* timer ISR frequency (Hz) */
#define ONE_HALF_SECOND (CPU_INT_FREQ/2)
#define TWENTY_MSEC (CPU_INT_FREQ/50)
#define NUM_20MS 3

/*---*/
/* calibration/training algorithm constants */
/*---*/
#define ALIGN_CURRENT 300 /* current to align phase: 1023=4.27A */
#define MAX_TEST_CURRENT 320 /* max test current: 1023=4.273A */
#define NUM_POINTS 80 /* total number of test points/phase */
#define VBUS 174 /* Vdc (Volts) x 1.024 */
#define R_PHASE 8 /* phase resistance (Ohms) */

/*------------------------------------*/
/* current loop algorithm constants */
/*------------------------------------*/
#define ILOOP_GAIN 22 /* Q3: gain = 2.75 */
#define MAXIMUM_DUTYRATIO 999 /* limit on the PWM duty cycle: */

/* 100% = (SYSCLK_FREQ/PWM_FREQ-1) */
#define ILIMIT 1023 /* current limit: (1023 = 4.273 A) */

/*------------------------------------*/
/* commutation algorithm constants */
/*------------------------------------*/
#define ALPHA 5 /* Q3: alpha = 0.625 */
#define MIN_DECISION_CURRENT 120 /* min decision current (1023=4.273A) */

/*--------------------------------------*/
/* velocity loop algorithm constants */
/*--------------------------------------*/
#define KI 1 /* (Q14 x 1200): Ki = 0.073 */
#define KP 1 /* Q2: Kp = 0.25 */
#define SPEED_THRESHOLD 4000 /* reduce velocity bw below 400 rpm */
#define INTEGRAL_LIMIT 16384000
#define MIN_TORQUE_COMMAND 150

/*---*/
/* velocity estimation algorithm constants */
/*---*/
#define K_VELOCITY_EST 150000
#define BETA 15 /* Q4: beta = 0.9375 */
#define ONE_MINUS_BETA (16-BETA) /* Q4: 1-beta = 0.0625 */

SPRA420

104 Developing an SRM Drive System Using the TMS320F240

/*------------------------------------*/
/* motor geometry related */
/*------------------------------------*/
#define NR 8 /* number of rotor poles */
#define NUMBER_OF_PHASES 3
/*+++*/
/* */
/*File: SL_SRM.H */
/*Target Processor: TMS320F240 */
/*Compiler Version: */
/*Assembler Version: */
/*Created: 10/1/97 */
/* */
/*---*/
/* Variable declarations for the SRM control algorithms */
/*+++*/

#include "constant.h"
#include "typedefs.h"

/*---*/
/*SRM variables data structure: */
/*---*/
/*fluxEstimate[i] -> estimated flux linked for the ith phase
/*b0[i] -> flux-linked vs. current estimated at the aligned
/* position in the form y = b1*x + b0; this
/* is the estimated b0 for the ith phase
/*b1[i] -> estimated b1 coefficient for the ith phase.
/* corresponds to aligned inductance
/*bias[i] -> flux estimation bias correction for the ith phase
/*df1_remainder -> 16-bit remainder used in the flux-estimation alg
/*df2_remainder -> 16-bit remainder used in the flux-estimation alg
/*waitFlag -> flag indicating a software wait, used for waits
/* during the training/calibration algorithm
/*waitCount -> counter used for software waits during the training
/* & calibration algorithm
/*delta_current -> change in desired current between test points of
/* the training/calibration algorithm
/*alignedCurrent[j] -> the measured phase current for the jth test
/* point during training/calibration
/*alignedFlux[j] -> the estimated phase flux for the jth test
/* point during trainig/calibration
/*minFlux -> minimum limit for the flux estimate
/*latch_current -> measured current at the end of an estimation period,
/* used during training/calibration
/*latch_flux -> flux estimate at the end of an estimation period,
/* used during training/calibration
/*a2d_chan[i] -> sets which A/D pin is used for the ith phase current
/*desiredTorque -> torque command (output of velocity loop)
/*integral_speed_error -> velocity loop integrator for PI compensator
/* iDes[i] -> current command for the ith phase
/*delta_count -> change in the software counter of the timer ISR,
/* between commutations
/*last_count -> count of the software counter of the timer ISR at
/* the most recent commutation
/*wEst_10xrpm -> shaft velocity estimate (units of rpm*10)
/*wDes_10xrpm -> desired shaft velocity (units of rpm*10)
/*Active -> indicates which phase is current active 0,1, or 2
/*iFB[i] -> current feedback measurement for the ith phase
/*dutyRatio[i] -> commanded % duty ratio for the high-side FET of the
/* ith phase
/*Update_Velocity -> flag to initiate the executation of the velocity estimation
/* algorithm in background
/*---*/
typedef struct {

long fluxEstimate[NUMBER_OF_PHASES];
int b0[NUMBER_OF_PHASES];
int b1[NUMBER_OF_PHASES];
int bias[NUMBER_OF_PHASES];
long df1_remainder;
long df2_remainder;
int waitFlag;
int waitCount;
int delta_current;
WORD alignedCurrent[NUM_POINTS];
long alignedFlux[NUM_POINTS];
long minFlux;
WORD latch_current;

SPRA420

Developing an SRM Drive System Using the TMS320F240 105

long latch_flux;
int a2d_chan[NUMBER_OF_PHASES];
int desiredTorque;
long integral_speed_error;

 WORD iDes[NUMBER_OF_PHASES];
int delta_count;
int last_count;
int wEst_10xrpm;

 int wDes_10xrpm;
int Active;

 WORD iFB[NUMBER_OF_PHASES];
 WORD dutyRatio[NUMBER_OF_PHASES];

int Update_Velocity;
} anSRM_struct;

/*---*/
/*PROTOTYPE DEFINITIONS */
/*---*/
void eventmgr_init();
void initializeSRM(anSRM_struct *anSRM);
void velocityController(anSRM_struct *anSRM);
void currentController(anSRM_struct *anSRM);
void Sensorless_Commutation(anSRM_struct *anSRM, int count);
void switch_lowside(int phaseactive);
void switch_mux(int adc1, int adc2);
void estimateFluxLinkage(anSRM_struct *anSRM);
void disable_interrupts();
void dsp_setup();
void initialize_counters_and_flags();
void enable_interrupts();
void start_background();
long get_alignedFlux(anSRM_struct *anSRM, int current);
void update_flux_estimate(anSRM_struct *anSRM);

/*+++
/*
/*File: SL_MAIN.C
/*Target Processor: TMS320F240
/*Compiler Version: 6.6
/*Assembler Version: 6.6
/*Created: 10/31/97
/*
/*+++*/
/* This file is the main program for the control of an SRM drive without */
/*using a position sensor */
/*+++*/

/*--*/
/*INCLUDE FILES */
/*--*/
#include "c240.h"
#include "srm.h"

SPRA420

106 Developing an SRM Drive System Using the TMS320F240

/*--*/
/*GLOBAL VARIABLE DECLARATIONS */
/*--*/
int count;
int slice;
int Learn_Flux_Curves;
int Toggle_LED;
anSRM_struct SRM;
int LEDvalue;

/*---*/
/*MAIN PROGRAM */
/*---*/
void main() {

disable_interrupts();
dsp_setup();
initializeSRM(&SRM);
eventmgr_init();
initialize_counters_and_flags();
enable_interrupts();

start_background();

}

/*++*/
/*BACKGROUND TASKS */
/*--*/
/*Upon completion of the required initialization, the main
/*program starts the background task. The background is
/*simply an infinite loop. Time critical motor control
/*processing is done via interrupt service routines and lower
/*priority processing is done in the background, when they
/*are needed. Three background operations are defined:
/*
/*1) Learn_Flux_Curves - this is the initial calibration task.
/* The flux-linkage vs. current data for each phase
/* is estimated during this task. This task runs one
/* time and is initiated by setting the LEARN_FLUX_CURVES
/* flag.
/*2) Update_Velocity - when a capture interrupt occurs,
/* the ISR stores the capture data and then intiates
/* this task. The velocity update is done in
/* background, because it is doing a floating point
/* division.
/*3) Toggle_LED - this task toggles an LED on the EVM to
/* provide visual feedback to the user that the code
/* is running. This task is initiated at a fixed
/* rate set by the ONE_HALF_SECOND value.
/*
/*++*/
void start_background()
{

while (1)
{

 /*-----------------------------------*/
 /* Flux-vs-current estimation task */
 /*-----------------------------------*/
 if (Learn_Flux_Curves) {

estimateFluxLinkage(&SRM);
Learn_Flux_Curves = 0;

 }

 /*-----------------------------------*/
 /* Velocity update task */
 /*-----------------------------------*/
 if (SRM.Update_Velocity) {

Msmt_Update_Velocity(&SRM);
SRM.Update_Velocity = 0;

 }

 /*-----------------------------------*/

SPRA420

Developing an SRM Drive System Using the TMS320F240 107

 /* Visual feedback task */
 /*-----------------------------------*/
 if (Toggle_LED) {

LEDvalue = -LEDvalue;
if (LEDvalue == 1) {

asm(" OUT 1, 000ch");
}

else {
 asm(" OUT 0, 000ch");

}
Toggle_LED = 0;

 SRM.wDes_10xrpm = 6000; /* motor speed cmd units = (rpm x 10) */
 /* just hard-coded here, but setup */
 /* another background task to allow */
 /* command from an external input */

 }
}

}

/*++*/
/*TIMER ISR */
/*++*/
/*
/*This interrupt service routine is executed at each occurence of the
/*maskable CPU interrupt INT3. This CPU interrupt corresponds to the
/*event manager group B interrupts, of which we enable only the timer #3
/*period interrup, TPINT3. The frequency, F, at which this routine is
/*executed is specified using the CPU_INT_FREQ parameter.
/*
/*While the calibration background task is active, the SRM control
/*algorithms which are implemented during the timer ISR are:
/*
/* 1. Current control (frequency = F)
/*
/*During normal operation, the SRM control algorithms which are implemented
/*during the timer ISR are:
/*
/* 1. Current control (frequency = F)
/* 2. Commutation (frequency = F)
/* 3. Velocity control (frequency = F/5)
/*
/*Additionally, time can be measured by counting the number of executions
/*of this ISR, which runs at a known, fixed rate. This measure of time
/*is used for several reasons including:
/*
/* - velocity estimation
/* - initiate the visual feedback background task
/* - software timing loops during the calibration task
/*
/*++*/
void c_int3()
{

IFR_REG = 0x0004; / clear interrupt flags */
*IFRB = 0xff;

currentController(&SRM); /* current loop algorithm */

count = count + 1; /* increment count */
slice = slice + 1; /* increment slice */

if (!Learn_Flux_Curves) { /* Normal operation, perform */
 Sensorless_Commutation(&SRM, count); /* commutation algorithm */
 if (slice == 1) {

velocityController(&SRM); /* do velocity loop algorithm */
 } /* in the 1st slice */
}
else { /* Else, calibration active */
 SRM.waitCount = SRM.waitCount + 1; /* increment wait count */
 if (count % TWENTY_MSEC == 0) { /* toggle software wait */
 SRM.waitFlag = 1; /* flag as needed */

SRM.latch_current = SRM.iFB[SRM.Active];
SRM.latch_flux = SRM.fluxEstimate[SRM.Active];

 }
}

SPRA420

108 Developing an SRM Drive System Using the TMS320F240

if (slice == 5) { /* reset slicer */
 slice = 0;
}

if (count == ONE_HALF_SECOND) { /* set flag for toggling the */
 Toggle_LED = 1; /* EVM's LED */
 count = 0;
}

}

/**/
void c_int4()
{

;
}

/*++*/
/*UTILITY SUBROUTINES */
/*++*/

/**/
void disable_interrupts()
{

asm(" SETC INTM");
}

/**/
void dsp_setup() {

int temp;

/*------------------------*/
/* Disable watchdog timer */
/*------------------------*/
temp = *WDCR;
temp = temp | 0x68;
*WDCR = temp;

/*--------------------------------------*/
/* initialize PLL module (10 MHz XTAL1) */
/*--------------------------------------*/
CKCR1 = 0xb1; / 20MHz CPUCLK = 10MHz crystal */

/* and 2x PLL mult ratio */
CKCR0 = 0xc3; / low-power mode 0, */

/* ACLK enabled, */
/* PLL enabled, */
/* SYSCLK=CPUCLK/2 */

*SYSCR = 0x40c0;

}

/**/
void initialize_counters_and_flags() {

count = 0; /* current timer ISR count */
slice = 0; /* ISR slice count */
Toggle_LED = 0; /* flag for visual feedback */

/* background task */
LEDvalue = 1; /* current LED value */
SRM.Update_Velocity = 0; /* flag for velocity update */

/* background task */
Learn_Flux_Curves = 1; /* flag for initial calibration */

/* background task */

}

/**/
void enable_interrupts() {

IFR_REG = 0xffff; / Clear pending interrupts */
*IFRA = 0xffff;
*IFRB = 0xffff;
*IFRC = 0xffff;
IMR_REG = 0x0004; / Enable CPU Interrupts: */

SPRA420

Developing an SRM Drive System Using the TMS320F240 109

/* INT3 */
IMRA = 0x0000; / Disable all event manager */

/* Group A interrupts */
IMRB = 0x0010; / Enable timer 3 period */

/* interrupt */
IMRC = 0x0000; / Disable Group C interrupts */
asm(" CLRC INTM"); /* Global interrupt enable */

}

/*+++
/*
/*File: SL_SRM.C
/*Target Processor: TMS320F240
/*Compiler Version: 6.6
/*Assembler Version: 6.6
/*Created: 10/31/97
/*
/*+++
/* This file contains the algorithms for control of an SRM without
/*use of a position sensor.
/*++*/

/*--*/
/*INCLUDE FILES */
/*--*/
#include "c240.h"
#include "srm.h"

SPRA420

110 Developing an SRM Drive System Using the TMS320F240

/*+++*/
/*COMMUTATION ALGORITHM */
/*---*/
/* This is a single-quadrant, one-phase at a time type of commutation
/*algorithm. The algorithm compares the estimated phase flux to a
/*switching flux. When the estimated phase flux exceeds the switching
/*flux, then a commutation to the next phase occurs. The switching flux
/*represents the expected flux at a "good" switching angle, for the
/*measured value of the phase current. The location of the switching
/*angle is determined by the constant ALPHA, 0 < ALPHA < 1.
/*
/*Also, to avoid the problem of this type of position sensorless
/*commutation at low current levels, the commutation condition is checked
/*only if the measured phase current exceeds a minimum threshold.
/*
/*If a commutation occurs, then the number of timer ISR's which were
/*executed since the last commutation is saved for use in the velocity
/*estimation algorithm, and the flag for running the velocity estimate
/*background task is set.
/*
/*--*/
void Sensorless_Commutation(anSRM_struct *anSRM, int count)
{
 int active, next;
 long alignedFlux;
 long switchingFlux;
 int channel;
 int current;

 active = anSRM->Active; /* the active phase */
 current = anSRM->iFB[active]; /* the current measurement */

 if (current > MIN_DECISION_CURRENT) { /* if above current threshold check */
/* commutation condition */

alignedFlux = get_alignedFlux(anSRM, current); /* get aligned flux for given */
/* current msmt from model */

switchingFlux = (ALPHA*alignedFlux) >> 3; /* calc switching flux as a */
/* percentage of the */
/* aligned flux */

if (anSRM->fluxEstimate[active]>switchingFlux) /* check commutation condtion */
{
 next = active + 1; /* switch to next phase */
 if (next > NUMBER_OF_PHASES-1) next = 0; /* check range of phase value */
 anSRM->Active = next; /* store change */
 anSRM->fluxEstimate[active] = 0; /* reset flux integrator */

 anSRM->df1_remainder = 0; /* and remainders */
 anSRM->df2_remainder = 0;

 anSRM->iDes[active] = 0; /* current this phase to 0 */
 anSRM->iDes[next] = anSRM->desiredTorque; /* torque to current */
 if (anSRM->iDes[next] > ILIMIT) { /* current limit */

anSRM->iDes[next] = ILIMIT;
 }
 channel = anSRM->a2d_chan[next]; /* switch A/D input mux */
 switch_mux(channel,channel+8);
 switch_lowside(0x1 << next); /* switch low-side FET's */

 anSRM->delta_count = /* store count of timer ISR's */
count - anSRM->last_count; /* since last commutation */

 if (anSRM->delta_count < 0) { /* for velocity estimation */
anSRM->delta_count = anSRM->delta_count
+ ONE_HALF_SECOND;

 }
 anSRM->last_count = count;
 anSRM->Update_Velocity = 1; /* set flag to run velocity */

/* estimation in background */
}

 }

 else { /* else, not above current minimum */
/* threshold */

SPRA420

Developing an SRM Drive System Using the TMS320F240 111

anSRM->iDes[active] = anSRM->desiredTorque; /* torque to current */
if (anSRM->iDes[active] > ILIMIT) { /* current limit */
 anSRM->iDes[active] = ILIMIT;
}

 }

}

/*++*/
/*VELOCITY ESTIMATION ALGORITHM */
/*--*/
/* This algorithm estimates the SRM shaft velocity. It is executed after */
/*each commutation occurs. */
/* */
/*Velocity is calculated according to the equation: */
/* */
/* w = delta_theta / delta_t */
/* */
/*where delta_theta is known (15 mech deg between commutations) */
/*and delta_t is the time between commutations as is measured by */
/*counting timer ISR executions. */
/* */
/*The algorithm is implemented in double precision and is of */
/*the form: */
/* w = K_VELOCITY_EST/count */
/* */
/*where the constant K_VELOCITY_ESTIMATE incorporates */
/*delta_theta and other units so that */
/*w has units of (rpm * 10). */
/* */
/*--*/

void Msmt_Update_Velocity(anSRM_struct *anSRM)
{

 DWORD sum_cnt;
 int inst_velocity;
 long filt_velocity;

 if (anSRM->delta_count > 7) { /* protect from divide by 0 and */
/* estimate out of range */

/*--*/
/* apply velocity = delta_theta/delta_time algorithm */
/*--*/

 sum_cnt = K_VELOCITY_EST/anSRM->delta_count;
 inst_velocity = ((int) sum_cnt);

/*--*/
/* IIR filter for smoothing velocity estimate */
/*--*/
filt_velocity = (BETA * anSRM->wEst_10xrpm)

+ (ONE_MINUS_BETA * inst_velocity);
 anSRM->wEst_10xrpm = (int) (filt_velocity >> 4);
 }

}
/*++*/
/*VELOCITY CONTROL LOOP ALGORITHM */
/*--*/
/* The algorithm implements a PI compensator for the velocity */
/*control of the SRM. The PI filter limits the integrator */
/*to prevent windup. While the shaft speed is low, the loop bandwidth */
/*is reduced, so that the loop remains stable when the velocity feedback */
/*is relatively infrequent (because of the commutation scheme, velocity */
/*"feedback" occurs only when a commutation occurs, thus at low speed, */
/*the velocity feedback frequency is low). Also, to help with the */
/*inherent algorithm difficulty that low current results in increased */
/*commutation errors with this type of sensorless approach, a minimum */
/*torque command is imposed at the output of this algorithm */
/*--*/
void velocityController(anSRM_struct *anSRM)
{

 int speed_error;
 int integral_error;

SPRA420

112 Developing an SRM Drive System Using the TMS320F240

 /*-------------------------*/
 /* calculate error signal */
 /*-------------------------*/
 speed_error = anSRM->wDes_10xrpm - anSRM->wEst_10xrpm;

 /*---*/
 /* reduce loop bandwidth at low shaft speed */
 /*---*/
 if (anSRM->wEst_10xrpm < SPEED_THRESHOLD) {

speed_error = speed_error >> 2;
 }

 /*-------------------------*/
 /* integrate error */
 /*-------------------------*/
 anSRM->integral_speed_error = anSRM->integral_speed_error + (long)speed_error;

 /*-------------------------*/
 /* apply integrator limit */
 /*-------------------------*/
 if (anSRM->integral_speed_error > INTEGRAL_LIMIT) {

anSRM->integral_speed_error = INTEGRAL_LIMIT;
 }
 if (anSRM->integral_speed_error < -INTEGRAL_LIMIT) {

anSRM->integral_speed_error = -INTEGRAL_LIMIT;
 }

 /*-------------------------*/
 /* PI filter */
 /*-------------------------*/
 integral_error = (int) ((KI*anSRM->integral_speed_error) >> 14);
 anSRM->desiredTorque = ((KP*speed_error) >> 2) + integral_error;

 /*---------------------------------*/
 /* insure a minimum phase current */
 /*---------------------------------*/
 if (anSRM->desiredTorque < MIN_TORQUE_COMMAND) {

anSRM->desiredTorque = MIN_TORQUE_COMMAND;
 }

} /* end velocityController */

SPRA420

Developing an SRM Drive System Using the TMS320F240 113

/*+++*/
/*CURRENT CONTROL LOOP ALGORITHM */
/*---*/
void currentController(anSRM_struct *anSRM) {

 int phase;
 int ierr;

 phase = anSRM->Active;

/*--*/
 /* read A/D converter for current feedback */

/*--*/
 anSRM->iFB[phase] = read_a2d(1);

/*---*/
/* update flux linkage estimate --- */
/* do here because it is a function of */
/* current measurement, at time k & */
/* voltage cmd (dutyRatio) at time k-1 */
/*---*/
update_flux_estimate(anSRM);

/*--*/
/* calculate error signal */
/*--*/
ierr = anSRM->iDes[phase] - anSRM->iFB[phase];
if (ierr < 0) ierr = 0;

/*--*/
/* current loop compensation */
/*--*/
anSRM->dutyRatio[0] = 0;
anSRM->dutyRatio[1] = 0;

 anSRM->dutyRatio[2] = 0;
anSRM->dutyRatio[phase] = ILOOP_GAIN * ierr;
anSRM->dutyRatio[phase] = (anSRM->dutyRatio[phase] >> 3);

/*-- */
/* limit duty ratio */
/*-- */
if (anSRM->dutyRatio[phase] > MAXIMUM_DUTYRATIO) {

anSRM->dutyRatio[phase] = MAXIMUM_DUTYRATIO;
}

/*---*/
/* output PWM signals to high-side FET's */

 /*--*/
 *CMPR1 = anSRM->dutyRatio[0];
 *CMPR2 = anSRM->dutyRatio[1];
 *CMPR3 = anSRM->dutyRatio[2];

} /* end currentController */

/*++ */
/*SRM ALGORITHM INITIALIZATION */
/*-- */
void initializeSRM(anSRM_struct *anSRM)
{

 int i;

 /*-- */
 /* define mux positions for current feedback of each phase */
 /*--- */
 anSRM->a2d_chan[0] = 1; /* phase A on pin ADCIN1 */
 anSRM->a2d_chan[1] = 2; /* phase B on pin ADCIN2 */
 anSRM->a2d_chan[2] = 3; /* phase C on pin ADCIN3 */

 /*------------------------------- */
 /* specify initial conditions */
 /*-------------------------------- */
 for (i=0; i < NUMBER_OF_PHASES; i++) {

anSRM->iDes[i] = 0;

SPRA420

114 Developing an SRM Drive System Using the TMS320F240

 anSRM->iFB[i] = 0;
anSRM->fluxEstimate[i] = 0;

 }

 anSRM->wEst_10xrpm = 0;
 anSRM->integral_speed_error = 0;
 anSRM->desiredTorque = 0;
 anSRM->last_count = 0;
 anSRM->minFlux = -999999;
 anSRM->df1_remainder = 0;
 anSRM->df2_remainder = 0;

 /*--------------------------------------- */
 /* initialization for calibration routine */
 /*--------------------------------------- */
 for (i=0; i < NUM_POINTS; i++) {

anSRM->alignedCurrent[i] = 0;
anSRM->alignedFlux[i] = 0;

 }

 for (i=0; i < NUMBER_OF_PHASES; i++) {
anSRM->b1[i] = 0;
anSRM->b0[i] = 0;
anSRM->bias[i] = 0;

 }

 anSRM->delta_current = MAX_TEST_CURRENT/NUM_POINTS;

}

/*+++
/*
/*File: FLUX_EST.C
/*Target Processor: TMS320F240
/*Compiler Version: 6.6
/*Assembler Version: 6.6
/*Created: 10/31/97
/*
/*+++
/* This file contains the algorithms used to estimate the SRM's
/*flux-linkage vs. current characteristics at the aligned
/*position.
/*++*/

/*--- */
/*INCLUDE FILES */
/*--- */
#include "c240.h"
#include "srm.h"

/*--*/
/*MACRO DEFINITION */
/*--*/
#define WAIT(time) \
 for (j=0; j < time; j++){ \

anSRM->waitFlag = 0; \
while(!anSRM->waitFlag); }

/*+++*/
/*CALIBRATION ROUTINE */
/*---*/
void estimateFluxLinkage(anSRM_struct *anSRM)
{

int i,j;
int test_current;
int channel;
int phase;

/*------------------------------------*/
/* for each phase do ... */
/*------------------------------------*/
for (phase=0; phase < NUMBER_OF_PHASES; phase++) {

 channel = anSRM->a2d_chan[phase]; /* switch mux A/D for current */
 switch_mux(channel,channel+8); /* measurement */
 anSRM->Active = phase;

SPRA420

Developing an SRM Drive System Using the TMS320F240 115

 /*---------------------------*/
 /* rotor to aligned position */
 /* --------------------------*/

 switch_lowside((0x1 << phase)); /* turn low-side FET on */
 anSRM->iDes[phase] = ALIGN_CURRENT; /* current command */

 WAIT(300); /* wait for some time for phase */
 /* to settle */

 /*---------------------------*/
 /* cycle through test points */
 /*---------------------------*/
 for (i=0; i < NUM_POINTS; i++) {

switch_lowside(0); /* turn low-side FET off */
anSRM->iDes[phase] = 0; /* command current to zero */
WAIT(1); /* wait for current decay */

switch_lowside(0x1 << phase); /* turn low-side FET on */
 test_current = (i+1)*anSRM->delta_current; /* new test point */

anSRM->iDes[phase] = test_current; /* cmd current to test value */

anSRM->fluxEstimate[phase] = 0; /* reset integrator and */
anSRM->df1_remainder = 0; /* remainders */
anSRM->df2_remainder = 0; /* */

WAIT(NUM_20MS); /* wait for current rise */

anSRM->alignedFlux[i] = anSRM->latch_flux; /* store flux/current data */
anSRM->alignedCurrent[i] = anSRM->latch_current;

 }

 /*----------------------------------*/
 /* make sure rotor is still aligned */
 /*----------------------------------*/

 anSRM->iDes[phase] = ALIGN_CURRENT; /* current command */
 WAIT(100); /* wait for some time for phase */

 /* to settle */

 /*-------------------*/
 /* turn off phases */
 /*-------------------*/
 *CMPR1 = 0; *CMPR2 = 0; *CMPR3 = 0; /* all high-side FET's off */
 switch_lowside(0); /* low-side FET's off */
 anSRM->iDes[phase] = 0; /* current command to zero */

 WAIT(3); /* wait for current decay */

 /*-------------------*/
 /* curve fit data */
 /*-------------------*/
 leastSquaresFit(anSRM, phase);

} /* end for loop */

/*-- */
/* set rotor initial conditions for start of normal operation */
/*---*/
anSRM->minFlux = 0; /* flux estimate lower limit */
anSRM->Active = 0; /* from aligned C, turn on A */

/* for positive rotation */
channel = anSRM->a2d_chan[anSRM->Active]; /* set A/D mux */
switch_mux(channel,channel+8);
switch_lowside((0x1 << anSRM->Active)); /* turn low-side FET on */

}

/*+++*/
/*LEAST SQUARES ESTIMATION ALGORITHM */
/*---*/
/*
/*Produces a least squares estimate of the form:
/*
/* y = b1*x + b0
/*

SPRA420

116 Developing an SRM Drive System Using the TMS320F240

/*Given data vectors x and y of length N, this algorithm
/*estimates coefficients b0 and b1 such that the sum of
/*square errors (SSE) is minimum.
/*
/* N
/* SSE = sum [y(i) - b0 - b1*x(i)]^2
/* i=1
/*
/* For this application, x is the measured current vector
/*and y is the estimated flux linked vector.
/*--*/
void leastSquaresFit(anSRM_struct *anSRM, int phase)
{

int i;
 float current;
 float flux;
 float sumX, sumY, sumXY, sumX2;
 float xbar, ybar;
 float b1, b0;
 float bias;

/*----------------------*/
/* clear summers */
/*----------------------*/

 sumX = 0;
 sumY = 0;
 sumXY = 0;
 sumX2 = 0;

/*-----------------------------*/
/* perform required summations */
/*-----------------------------*/

 for (i=0; i < NUM_POINTS; i++) {
 current = (float) anSRM->alignedCurrent[i];
 flux = (float) anSRM->alignedFlux[i];
 sumX = sumX + current;
 sumY = sumY + flux;
 sumXY = sumXY + current*flux;
 sumX2 = sumX2 + current*current;

 }

/*-----------------------------*/
/* apply linear fit equations */
/*-----------------------------*/
b1 = (NUM_POINTS*sumXY - sumX*sumY)/(NUM_POINTS*sumX2 - sumX*sumX);

 xbar = sumX/NUM_POINTS;
 ybar = sumY/NUM_POINTS;
 b0 = ybar - b1*xbar;

/*-----------------------------*/
/* determine bias correction */
/*-----------------------------*/
bias = b0/(TWENTY_MSEC*NUM_20MS);

/*-----------------------------*/
/* store estimation results */
/*-----------------------------*/

 anSRM->b1[phase] = (int) b1;
 anSRM->b0[phase] = (int) b0;
 anSRM->bias[phase] = (int) bias;
}

/*+++*/
/*CALCULATE ALIGNED FLUX */
/*---*/
long get_alignedFlux(anSRM_struct *anSRM, int current)
{

long alignedFlux;

alignedFlux = current * anSRM->b1[anSRM->Active]; /* calc aligned flux */

return alignedFlux;

}

/*+++ */
/*UPDATE_FLUX_ESTIMATE */

SPRA420

Developing an SRM Drive System Using the TMS320F240 117

/*--- */
void update_flux_estimate(anSRM_struct *anSRM)
{

int phase;
 long df1, df2;
 int temp1, temp2;
 long dflux;

phase = anSRM->Active;

/*--*/
/* update flux linkage estimate */
/*--*/

 df1 = VBUS * anSRM->dutyRatio[phase] + anSRM->df1_remainder;
 anSRM->df1_remainder = df1 & 0x3ff;

temp1 = (int) (df1 >> 10);
df2 = R_PHASE * anSRM->iFB[phase] * 273 + anSRM->df2_remainder;
anSRM->df2_remainder = df2 & 0xffff;
temp2 = (int) (df2 >> 16);
dflux = 100*(temp1-temp2) - anSRM->bias[phase];

anSRM->fluxEstimate[phase] = anSRM->fluxEstimate[phase] + dflux;

if (anSRM->fluxEstimate[phase] < anSRM->minFlux) {
anSRM->fluxEstimate[phase] = anSRM->minFlux;

}

}

/* FILE: SL_LINK.CMD */
/* Linker command file for F240 EVM implementation of sensorless SRM drive */
vectors.obj
evmgr.obj
sl_srm.obj
flux_est.obj

-c /* use ROM autoinitialization model */
-m main.map
-o main.out
-l c:\2xxtools\rts2xx.lib

MEMORY
{
 PAGE 0: VECTORS: origin = 0x0000 length = 0x0040 /* EMIF */
 PAGE 0: CODE: origin = 0x0040 length = 0x1FC0 /* EMIF */
 PAGE 1: MMRS: origin = 0x0000 length = 0x0060 /* MMRS */
 B2: origin = 0x0060 length = 0x0020 /* DARAM */

 B0: origin = 0x0100 length = 0x0100 /* DARAM */
 B1: origin = 0x0300 length = 0x0100 /* DARAM */
 DATA: origin = 0xa000 length = 0x2000 /* EMIF */

}

SECTIONS
{
 .VECTOR > VECTORS PAGE 0
 .text > CODE PAGE 0
 .cinit > CODE PAGE 0
 .switch > CODE PAGE 0
 .mmrs > MMRS PAGE 1 /* Memory Mapped Registers */
 .data > DATA PAGE 1
 .bss > DATA PAGE 1
 .const > DATA PAGE 1
 .stack > DATA PAGE 1
 .sysmem > DATA PAGE 1

}

