TMS320 DSP
DESIGNER’S NOTEBOOK

Using the Capture Units
for Low Speed Velocity
Estimation on a
TMS320C240

APPLICATION BRIEF: SPRA363

David Alter
Digital Signal Processing Products
Semiconductor Group

Texas Instruments
July 1997

‘9 TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate Tl officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of Tl covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

Tl is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE
US TMS320 FAX

US TMS320 BBS

US TMS320 emall

(281) 274-2320
(281) 274-2324
(281) 274-2323
dsph@ti.com

Contents

Y 13 1 = Lo PP
DeSIgN ProbBI@M ... 8
1Yo)11 11T o T
Appendix A: Q FOIMAt REVIEW ... 16
Figures
Figure 1. Position Interval Determination From Quadrature Encoder Output....... 10
Examples

EXample 1. Code LiSHNGooeoieeeeeeeeee e 13

Using the Capture Units for Low
Speed Velocity Estimation on a
TMS320C240

Abstract

Estimating velocity from a digital position sensor is a cost-effective
strategy in motor control. Equations are given for two different first
order approximations for velocity. This document describes how the
capture units are used for low speed velocity estimation on the
TMS320C240. Equations are given to demonstrate the techniques
used. There is a lengthy code example and timing diagrams to show
exactly how the techniques are implemented.

Using the Capture Units for Low Speed Velocity Estimation on a TMS320C240

e

8

Design Problem

Solution

SPRA363

How are the capture units used for low speed velocity estimation on
the TMS320C240?

General Issues: Estimating velocity from a digital position sensor is
a cost-effective strategy in motor control. Two different first order
approximations for velocity may be written as:

v(k) Dw Equation 1
v(k) D# Equation 2

t(k) —t(k -1)

where v is velocity
X is position
tis time
T is a fixed sampling period
X is a fixed position interval
k is the discrete-time index

Equation (1) is the conventional approach to velocity estimation and
can be implemented on the TMS320C240 by, for example, a
glueless interface between the on-chip QEP logic and a quadrature
encoder. The encoder count (position) is read at the beginning of
each velocity loop calculation, the difference x(k) - x(k-1) formed,
and a new velocity estimate computed by multiplying by the known
constant 1/T.

Estimation based on equation (1) has an inherent accuracy limit
directly related to the resolution of the position sensor and the
sampling period T. For example, consider a 500 count/revolution
gquadrature encoder with a velocity loop sample rate of 400 Hz.
When used for position the quadrature encoder gives a fourfold
increase in resolution, in this case 2000 counts/rev. The minimum
rotation that can be detected is therefore 0.0005 revolutions, which
gives a velocity resolution of 12 rpm when sampled at 400 Hz. While
this resolution may be satisfactory at moderate or high speeds, e.g.
1% error at 1200 rpm, it would clearly prove inadequate at low
speeds. In fact at speeds below 12 rpm, the speed estimate would
erroneously be zero much of the time.

3

At low speed, equation (2) provides a more accurate approach. It
requires a position sensor that outputs a fixed interval pulse train,
such as the aforementioned quadrature encoder. The width of each
pulse is defined by the sensor resolution, and by measuring the
elapsed time between successive pulse edges, equation (2) can be
implemented on a DSP by performing a division. Note that the
velocity estimate is no longer updated at regular time intervals, but
rather the update rate is proportional to the motor speed. The
accuracy of this method is directly related to both the counter bit-
width and the speed of the motor. At the minimum designed for
speed (to be discussed later), the 16-bit timers on the TMS320C240
give an achievable accuracy of 1 part in 2'° or 0.0015%! However,
this method suffers from the opposite limitation, as does equation
(1). A combination of relatively large motor speeds and high sensor
resolution makes the time interval t(k) - t(k-1) small, and thus more
greatly influenced by the timer resolution. This can introduce
considerable error into high-speed estimates.

This technical brief presents the various design issues associated
with implementing equation (2) on a TMS320C240 DSP, gives a
design example, and also provides example code for an interrupt
driven velocity estimator based upon the example design.

TMS320C240 Hardware Issues: The (time) width of the incoming
position pulse is recorded by a capture unit working with either GP
Timer 2 or 3. The selected 16-bit timer is run in the continuous-up
count mode, which allows automatic rollover from OxFFFF to 0x0000
on overflow. The correct value for t(k) - t(k-1) will be obtained only if
no more than 65,535 counts (2'° - 1) have occurred between t(k)
and t(k-1). The time base prescaler for the selected timer must
therefore be carefully chosen based upon the expected minimum
motor velocity and the known position interval X.

Sensor Issues: The position interval X is solely determined by the
sensor resolution. It is advantageous to have X relatively small so
that t(k) - t(k-1) (in timer counts) does not overflow 16-bit width.
However, X must not be too small relative to the GP Timer clock rate
or t(k) - t(k-1) will be small and more greatly influenced by the timer
resolution. A quadrature encoder can be utilized so as to provide
any of three different values for X, as shown in Figure 1. Consider
an encoder rated at 500 pulses/rev. The base pulse width is the
reciprocal of this, X, = 0.002 rev. To obtain X = X,, one captures the
time between two successive rising edges (or two successive falling
edges) on a single encoder channel. Alternately, by capturing the
time between successive rising and falling edges on a single
channel, one can reduce this value by half: X = X,/2 = 0.001 rev.
Finally, since the two encoder channels are 90 degrees apart in
phase, one can also capture the time between successive edges on
alternating channels. This yields X = X¢/4 = 0.0005 rev. This last
approach requires the use of two of the capture units on the
TMS320C240, one for each channel.

Using the Capture Units for Low Speed Velocity Estimation on a TMS320C240 9

e

Figure 1. Position Interval Determination From Quadrature Encoder Output

10

SPRA363

]
< Xo !
4 |
[}
Xo
2

Motor Speed Issues: The motor speeds for which the estimation
calculation will produce valid results are bounded by both upper and
lower limits. These limits are determined by the pulse width X, the
GP Timer prescale value, and the numerical scaling employed in the
software. The lower limit is the speed where a rotation of X
revolutions takes exactly 65,535 GP timer counts, as discussed
previously. The upper limit results from the nature of fractional
division. On the TMS320C240, division is performed using multiple
conditional subtraction instructions (SUBC). The number of SUBC
instructions executed determines the Q format by which the quotient
should be interpreted, and the maximum allowable value for this Q
format is the upper speed limit (see Appendix for a Q format review).
The maximum value of the quotient must be determined a priori, and
a Q format selected (and coded for) that accomodates this worst
case. A trade-off exists between speed range and accuracy. For
example, selecting Q15 format allows a maximum speed value of
~1. Q14 format allows values up to ~2, but will be one bit less
accurate than Q15 for values less than 1. One approach to
designing a system with a large speed range is to keep the upper
estimation limit relatively small so that good accuracy is obtained at
low speed, and have the software switch to equation (1) when
speeds reach higher values. An encoder can easily meet the needs
of both equations on the TMS320C240 by connecting the two
encoder channels to Capture Units 1 and 2, and switching between
QEP decode and capture functions as needed.

Design Example: A particular control application must meet the
following requirements:

O quadrature encoder resolution = 500 pulses/rev
O minimum speed =1 rpm (0.01667 rps)
O TMS320C240 DSP clock rate = 50 ns (20 MIPS)

3

For this example, equation (2) will be implemented using a single
encoder channel with rising and falling edges captured. Therefore,
X = Xo/2 = 0.001 rev. as previously discussed. This simplifies the
code compared to the Xo/4 implementation since it requires only a
single capture unit. At the minimum speed of 1 rpm, the pulse width
will be (0.001 rev) / (0.01667 rev/s) = 0.06 sec. With a 50 ns DSP
clock, 1,200,000 clock counts will occur for each pulse. This
exceeds the 65,535 count limit, and therefore a suitable prescaler
should be used to clock the desired GP timer. A minimum prescale
of 18.3 is needed (1,200,000 / 65,535). A prescale of 32 is selected
on the TMS320C240 since that is the nearest available larger
prescale. Equation (2) can now be represented numerically as:

X _ 0.001Irev _ 625
countsCprescald ICPUCLK counts[132(50ns counts
Equation 3

v rev/s

where counts is the number of timer counts that occurred during a
rotation of magnitude X. Note that this prescale actually allows for a
minimum motor speed of 0.572 rpm.

Vimin = 625 rev/s=0.00954rev/s=0.572rpm Equation 4
65535

The final step is to select the Q format for v, which will define the
maximum allowable motor speed. Using the Q15 format, the
minimum number of counts that must elapse between captured
pulse edges is 626 (maximum Q15 number is just less than 1).
Therefore, the maximum velocity becomes 1 rev/s = 60 rpm. The
timer error at 60 rpm is essentially one clock count out of 626
(0.16%), or 0.1 rpm. The timer error at 0.572 rpm is one clock count
out of 65535 (0.0015%), or 8.6E-6 rpm. Of course, Q15 format only
allows 15-bit accuracy for positive numbers, so the minimum
achievable error after the division will actually be 0.003%. Selecting
different units for v can help scale the problem. For example in
radians/sec, v = 3927/counts, which allows a maximum speed of
9.55 rpm using the Q15 format.

Application Code: The following TMS320C240 assembly code
implements the velocity estimator for the design example, i.e.
equation (3). It utilizes Capture Unit 3 and GP Timer 2. There are
three different parts to the code. Section 1 defines some register
addresses and allocates memory for variables. Section 2 contains
initialization code for GP Timer 2 and Capture Unit 3. It should be
incorporated into the initialization routine at the beginning of the
main program. In addition to the initializations shown, the main
program must also perform the following setup tasks:

1) Set bit 6 in the OCRB register to select the capture function for
the CAP3/IOPCS6 pin.
2) Set bit 3 in the IMR register to enable core interrupt #4.

Using the Capture Units for Low Speed Velocity Estimation on a TMS320C240 11

12

SPRA363

3) Clear the INTM bit in the STO register to enable global interrupts.

Note that the old timer count, t_old, is initialized to zero. Therefore,
the first pass through the estimator will produce an erroneous result.
This problem can be handled as desired by modifying the code.

Section 3 contains the Capture Unit 3 interrupt service routine that
computes the velocity estimation. The interrupt branching sequence,
as designed in the main program, should ultimately branch to the
starting address of this routine, here labeled "CAP3INT." If none of
the other three capture unit interrupts are being used, the interrupt
vector at program address 0x0008 can be changed to directly
branch here, e.g. B CAP3INT. See "Interrupts" in the TMS320C24x
DSP Controllers Reference Set, Volume 1 for more information on
interrupt management.

Example 1. Code Listing

; Section 1: Definitions and memory allocations

’

T2PR .set 7407h ;GP Timer 2 Period Register
T2CON .set 7408h ;GP Timer 2 Control Register
CAPCON .set 7420h ;Capture Unit Control
CAP3FIFO .set 7425h ;Capture Channel 3 FIFO Top
EVIMRC .set 742Eh ;Group C Int. Mask Register
EVIFRC .set 7431h ;Group C Int. Flag Register

.bss t new,5,1 ;new timer count

t old .set t new+l ;old timer count

delta t .set t new+2 ;change in timer count
dividend .set t new+3 ;dividend of velocity calculation
velocity .set t new+4 ;velocity

; Section 2: GP Timer 2 and Capture 3 Initializations

’

;setup GP TIMER 2 for CAPTURE time base
LDP #232 :DP set for 7400-747Fh
SPLK #OFFFFh,T2PR ;set Timer 2 period register

SPLK #1001010101001000b,T2CON
* (T
* FEDCBA9876543210
* bit 15-14 10: operation not affected by emulation suspend
*bit 13-11 010: continuous-up count mode
* bit 10-8 101: prescale =/32
*hit7 0: use own TENABLE bit
*hit6 1. enabletimer
*bit 5-4 00: clock source = CPUCLK
*bit 3-2 10: reload timer compare immediately
*bitl 0O: disable timer compare
*bit0 0: use own period register

;setup CAPTURE #3

SPLK #1001000000001100b,CAPCON
* T
* FEDCBA9876543210
*hit15 1. no action
* bit 14-13 00: disable CAP1-2 and QEP
*hit12 1. enable CAP3
*hit11 0: disable CAP4
*hit 10 0: CAP3-4use TIMER 2
*hit9 0. CAP1-2use TIMER 2
*hit8 0. CAP4 does not start ADC
*bit 7-6 00: CAP1 no detection

Using the Capture Units for Low Speed Velocity Estimation on a TMS320C240

13

e

*hit 5-4 00: CAP2 no detection
*bit 3-2 11:. CAPS3 both edges
*hit 1-0 00: CAP4 no detection

:enable CAP3INT in EVIMRC :load ACC with mask
OR EVIMRC ;OR with EV mask register C
SACL EVIMRC ;save EV mask register C
:initialize relevant variables
LDP #t new ;set data page
SPLK #625,dividend ;initialize dividend
SPLK #0,t old ;initialize old count

; Section 3: Capture 3 Interrupt Service Routine

’

STATUS4 .usect "BLOCKB2",2 :must be linked to DP 0
CONTEX4 .usect "CONTEXT",2,1 ;link anyplace

ext
CAPS3INT:

;context save
SST #0, STATUS4 :Sstore STO
SST #1, STATUS4+1 ;store ST1

LDP #CONTEX4 ;set data page
SACH CONTEX4 ;save ACCH
SACL CONTEX4+1 :save ACCL

;compute delta_t
LDP #232 ;data page set to
; event manager regs
SPLK #0100b,EVIFRC ;clear CAP3INT
; flag in EVIFRC reg

LACC CAP3FIFO :read new time
LDP #t new ;set data page
SACL t_new ;storetot new
SUB t old :subtract

SACL delta t ;store to delta_t
LACC t new ;move t newtot old
SACL t_old

;perform the division
LACC dividend,16 ;load dividend

RPT #14 :do SUBC 15 times

SUBC delta_t

SACL velocity ;store Q15 result
:context restore

LDP #CONTEX4 ;set data page

LACL CONTEX4+1 :restore ACCL

ADD CONTEX4,16 :restore ACCH

14 SPRA363

LDP #0 ;set data page

LST #1, STATUS4+1 rrestore ST1

LST #0, STATUS4 restore STO

CLRC INTM ;global interrupts
RET :return from ISR

Using the Capture Units for Low Speed Velocity Estimation on a TMS320C240 15

e

Appendix A: Q Format Review

Fractional numbers are represented in the TMS320C240 DSP in a
fixed-point 2's complement form called Q format. In Qnformat, the n
signifies the number of bits to the right of the binary point. Thus, a
16-bit word has one sign bit, 15-n integer bits, and n fractional bits.
The binary number 1101000000000000b can be interpreted, for
example, as follows:

QO0: 1101000000000000.b = -2%° + 214 + 212 =-12288
Q14: 11.01000000000000b = -2* + 2° + 272 =-0.75
Q15: 1.101000000000000b = -2° + 27 + 23 =-0.375

QO is seen equivalent to the standard representation for signed
integers. In any 16-bit Q format, the minimum (most negative) value
that can be represented is 12000000000000000b (0x8000h), and the
maximum (most positive) value is 0111111111111111b (0x7FFFh).
Table 1 shows numerical ranges for three common Q formats.

Table 1. Decimal ranges of fractional formats

16

SPRA363

minimum maximum
value value
Qo0 -32768 32767
Q14 -2 1.999939
Q15 -1 0.999969

