
USB FIRMWARE USER’S GUIDE
Information contained in this publication regarding device applications and the like is intended by way of suggestion
only. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with
respect to the accuracy or use of such information. Use of Microchip’s products as critical components in life support
systems is not authorized except with express written approval by Microchip.

 2002 Microchip Technology Incorporated. All rights reserved.

The Microchip logo, name, PIC, PICmicro, PICMASTER, PICSTART, and PRO MATE are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries. MPLAB, and Smart Serial are trademarks of
Microchip Technology in the U.S.A. and other countries.

All product/company trademarks mentioned herein are the property of their respective companies.
 2002 Microchip Technology Inc. DSxxxxxA

USB Firmware User’s Guide

DSxxxxxA  2002 Microchip Technology Inc.

USB FIRMWARE USER’S GUIDE

Table of Contents
Chapter 1. General Information
1.1 Introduction .. 1
1.2 USB Basics ... 3

Chapter 2. Example Application
2.3 Cursor in a Circle Example .. 5
2.4 File Packaging ... 8

Chapter 3. Processor Resources
3.5 Microcontroller Resource Usage ... 11
3.6 Function Call Reference .. 12
3.7 Behind the Scenes .. 15

Chapter 4. USB Application Development
4.8 Recommended Tools .. 17
4.9 Deciding on Endpoint Usage ... 17
4.10 Creating Descriptors .. 18
4.11 Assembly ISR Considerations ... 18
4.12 Enumeration and Timing Considerations .. 18
4.13 Sending and Receiving Data ... 19
4.14 Optimizing the Firmware ... 19
4.15 References .. 21

Worldwide Sales and Service ...23
 2002 Microchip Technology Inc. DSxxxxxA-page iii

USB Firmware User’s Guide
DSxxxxxA-page iv  2002 Microchip Technology Inc.

USB FIRMWARE USER’S GUIDE

Chapter 1. General Information
1.1 Introduction
The USB Support Firmware provided by Microchip Technology Inc.,
implements the functionality defined in Chapter 9 of the USB Specification
(version 1.1) and the Human Interface Device Class Definition. By using a
pre-defined library of Application Programming Interfaces (APIs), the Support
Firmware allows developers with little or no USB experience to quickly
implement their applications on PIC16C745/765 microcontrollers. Routine
tasks such as initialization and communication, as well as other specialized
USB tasks, are handled by nine APIs and two user-definable functions. This
allows the developer to concentrate on application-specific details such as
device descriptors, and not worry about re-creating common utilities over and
over again.

Figure 1.1:

V2.00 marks a fairly substantial change in architecture from the V1.xx ver-
sions. While V1.xx handled the USB completely from the Internet Service Rou-
tine (ISR), V2.00 shifts most of the processing to a function called from the
main program loop. There are several advantages to this. First, it eliminates
the many levels of the stack that currently must be reserved for the ISR. Sec-
ond, it minimizes the length of the ISR which is desirable from a “good software
engineering practice” standpoint. Finally, it gives control over, when the USB is
serviced, to the software engineer writing the application. This is particularly
important for timing critical systems where a few hundred instruction cycles to
process the interrupt at the wrong time could potentially damage the system.

V2.00 requires rev. A2 or newer devices. See Errata DS80114C and
DS80143A for more details.

Put
EP1

Get
EP1

Init
USB

USB Peripheral

Main Application

USB
 2002 Microchip Technology Inc. DSxxxxxA-page 1

USB Firmware User’s Guide
1.1.1 About This Guide
The USB support firmware is available in two programming languages: Micro-
chip Assembly, and Hi-Tech C. Each version will have its own section in this
manual, where appropriate.

1.1.2 Firmware Updates
Microchip is constantly providing new USB application examples. Please refer
to Microchip's webpage, www.microchip.com, for updates and new USB exam-
ples.
DSxxxxxA-page 2  2002 Microchip Technology Inc.

General Information
1.2 USB Basics
There are certain basic USB concepts that apply to the PIC16C745/765. This
section will clear up any confusion regarding the capabilities of this device.

1.2.1 Endpoints
Endpoints are buffers where data waits to be put onto the USB bus, or where
data is removed from the bus. Endpoints consist of a number and a direction.
All USB devices use EP0 for administrative communication between the
device and the host. This means EP0 is bi-directional and is actually two
endpoints, EP0 IN and EP0 OUT.

The Buffer Descriptor Table for the PIC16C745/765 has 40 bytes, or five
(eight byte each) buffers, set aside for endpoint buffers. EP0 IN and OUT
need dedicated buffers since a setup transaction can never be NAKed. That
leaves three buffers for four possible endpoints. Of these, only two can be
used because the USB specification only allows low speed devices to have
two endpoints (USB V1.1 paragraph 5.3.1.2.) other than EP0.

The default configuration allocates individual buffers to EP0 OUT, EP0 IN,
EP1 OUT, and EP1 IN. The last buffer is shared between EP2 IN and EP2
OUT. Again, the spec says low speed devices can only use two endpoints
beyond EP0. This configuration supports most of the possible combinations of
endpoints (EP1 OUT and EP1 IN, EP1 OUT and EP2 IN, EP1 OUT and EP2
OUT, EP1 IN and EP2 OUT, EP1 IN and EP2 IN). The only combination that is
not supported by this configuration is EP2 IN and EP2 OUT. If an application
needs both EP2 IN and EP2 OUT, the Set_Configuration function will need to
be edited to give each of these endpoints dedicated buffers at the expense of
EP1. Using one of the other combinations should be sufficient, however.

1.2.2 Bandwidth
The PIC16C745/765 is a low-speed USB device. The data rate for one
endpoint is limited to 800 bytes/second. There are two endpoints (beyond
EP0) and another 800 bytes/second is available on the other endpoint. This
gives a uni-directional minimum guaranteed transfer rate of 1600 bytes/
second. This transfer rate is uni-directional because, as mentioned above, an
endpoint is defined as a number and a direction. If the desired direction of
communication was device to host, for instance, endpoints EP1 IN and EP2
IN would be used.

The HID Class Specification makes available the Get_Report and Set_Report
requests. These requests can increase the bandwidth of a device up to 10
times that available on EP1 or EP2. Get_Report and Set_Report do this
because they allow for data tranfers via EP0. EP0 has a polling rate of 1ms,
thus the increase in bandwidth: up to 8000 bytes/second in each direction.
 2002 Microchip Technology Inc. DSxxxxxA-page 3

USB Firmware User’s Guide
1.2.3 Data Types
The USB specification defines four transfer types: control, interrupt,
isochronous, and bulk. Of these, only two are available to low-speed devices:
control and interrupt. Control transfers support enumeration and
communicate via EP0. The host sends requests and setup information to the
microcontroller over EP0 OUT. The microcontroller also responds to those
requests via EP0 IN. Interrupt transfers guarantee maximum latency. The
user specifies the maximum polling rate in the endpoint descriptor. For
instance, if 10 ms is specified, this means that the host polls the particular
endpoint at least once every 10 ms. 10 ms is the fasted interval that can be
requested according to the USB Specification. For clarification, low-speed
devices use EP0 control transfers while EP1 and EP2 use only interrupt
transfers.
DSxxxxxA-page 4  2002 Microchip Technology Inc.

USB FIRMWARE USER’S GUIDE

Chapter 2. Example Application
2.3 Cursor in a Circle Example
The USB Support Firmware includes an example application. This application
enumerates as a mouse and has the effect of moving the cursor in a circle on
the screen. The example provides known working software for the purpose of
verifying hardware. It also provides properly setup descriptors, an example
ISR, and an example of how enumeration is initiated.

2.3.1 Hardware
The circuit required to run the firmware is shown in Figure 2.2. The
PICDEM™ USB Demonstration Board is a great investment as it provides the
circuit and a generous prototyping area. It includes status LEDs for viewing
the enumeration progress of the USB support firmware, connectors for USB,
RS232, gameport and PS/2 connectors, and sockets for both the PIC16C745
and PIC16C765.

Figure 2.2: PIC16C745/765 Circuit

MCLR

VDD

VDD

VSS

VSS

C1

0.1µF

VUSB

D -

D +

OSC1

OSC2

6 MHz
Crystal Osc.

C2

R1
1.5K

C3
33 pF

C4
33 pF
 2002 Microchip Technology Inc. DSxxxxxA-page 5

USB Firmware User’s Guide
2.3.2 Running the Example
The following sections provide instructions on how to run the USB firmware
on a PIC16C745, or on the emulator. Emulation tips are also given.

2.3.2.1 Programming a PIC16C745

1. Unzip usbxxxx.zip to a project folder.
2. Program a PIC16C745. Make sure the configuration bits are set as fol-

lows:

• Oscillator: H4

• Watchdog Timer: Off

• Power-up Timer: Off

• Code Protect: Off

3. Apply the PIC16C745 in the circuit described in the previous section.
4. Plug in the USB cable. On machines with Windows 98, second edition

or newer, or Mac OS X, the operating system will detect a new device
and install the necessary drivers automatically. After this occurs, the cur-
sor will rotate in a small circle on the screen. To stop the cursor from
rotating, detach the USB cable.

2.3.2.2 Using the Emulator

1. Unzip usbxxxx.zip to a project folder.
2. Make sure the emulator is setup as follows in the development mode dia-

log. (Setup will differ for a third party emulator.)

• Tools: MPLAB-ICE Emulator

• Clock - Desired Frequency: 24 MHz

• Configuration - Watch Dog Timer None

• Power - Processor Power: From Target Board

3. Attach the appropriate processor module and device adapter to the ICE.
Then attach the device adapter to the circuit described in the previous
section. Refer to Microchip’s Product Line Card for the identity of the pro-
cessor module and device adapter.

4. Plug in the USB cable and run the emulator. On machines with Windows
98, second edition or newer, or Mac OS X, the operating system will
detect a new device and install the necessary drivers automatically. After
this occurs, the cursor will rotate in a small circle on the screen. To stop
the cursor from rotating, press F5.
DSxxxxxA-page 6  2002 Microchip Technology Inc.

Example Application
2.3.2.3 MPLAB-ICE Emulation Tips

1. The emulator is getting its power from the target board, so the board
must be powered. This is done by plugging in the USB cable. (On the
PICDEM USB board make sure the J3 jumper is set to “bus powered”.)

2. Make sure the emulator is turned on.
3. Make sure the emulator development mode is selected:

• Go to the “Option” menu and click “Development Mode”.

• Select the “MPLAB-ICE Emulator” radio button in the Development
Mode dialog.

• Click “OK”. The emulator will initialize.

4. Make sure the proper processor module and device adapter are
installed. Refer to Microchip’s Product Line Card for this information.

5. Should there be a problem at this point, refer to the MPLAB-ICE User’s
Guide.
 2002 Microchip Technology Inc. DSxxxxxA-page 7

USB Firmware User’s Guide
2.4 File Packaging
The file packaging differs between the Assembly and C versions of the USB
Support Firmware. The following paragraphs detail the file packaging for each
version.

2.4.1 Assembly Version
The Assembly version is comprised of seven files necessary to build the Hex
file that is with the project. These files are:

• movecurs.pjt

• 16C745.lkr

• usb_defs.inc

• usb_main.asm

• usb_ch9.asm

• hidclass.asm

• descript.asm

The last five files pertain to implementing USB on the PIC16C745/765. A brief
description of these files are as follows:

• usb_defs.inc - Defines USB variables and macros used in the following
assembly files.

• usb_main.asm - Implements the Cursor in a Circle example. The proper
way of implementing an Interrupt Service Routine (ISR), initializing USB
communication, polling the ServiceUSB routine, and using the Put inter-
face are components of the example that are useful to the user.

• usb_ch9.asm - Implements the functions found in Chapter 9 of the USB
Specification, version 1.1(1). These functions are discussed in
Section 3.6.

• hidclass.asm - Implements the functions found in the Human Interface
Device Class Definition(2). As some users will not be implementing a
HID device, details on removing HID related code from the firmware is
given in Section 4.14.2. Section 3.6.3 describes the HID functions in
detail.

• descript.asm - Contains the descriptors for the Cursor in a Circle exam-
ple. The user's own descriptors will replace those found in this file.
Details on creating descriptors are covered in Section 4.10.
DSxxxxxA-page 8  2002 Microchip Technology Inc.

Example Application
2.4.2 HI-TECH C Version
The HI-TECH C version is composed of five files. These files are:

• usb.pjt

• usb.h

• usb_defs.h

• usb_main.c

• usb_ch9.c

The last four files pertain to implementing USB on the PIC16C745/765. A brief
description of these files are as follows:

• usb.h - Header file for usb_main.c. It declares the function from
usb_ch9.c that is used in usb_main.c.

• usb_defs.h - Defines the USB variables and macros used in following
files.

• usb_main.c - Implements the Cursor in a Circle example. The proper
way of initializing USB, polling the ServiceUSB() function, and using the
Put interface are components of the example that are useful to the user.

• usb_ch9.c - Implements the functions found in the chapter 9 of the USB
specification version 1.1 (1) and the Human Interface Device Class Def-
inition (2). The descriptors for the Cursor in a Circle example are also in
this file. Details about this file are covered in sections 6.1 and 8.5.
 2002 Microchip Technology Inc. DSxxxxxA-page 9

USB Firmware User’s Guide
NOTES:
DSxxxxxA-page 10  2002 Microchip Technology Inc.

USB FIRMWARE USER’S GUIDE

Chapter 3. Processor Resources
3.5 Microcontroller Resource Usage
Processor resources are always a concern in microcontroller firmware
development. These resources include ROM, RAM, Common RAM, Stack
Levels and processor cycles. This chapter attempts to quantify the impact on
each of these resources, and shows ways to avoid conflicts.

3.5.1 Stack Levels
The hardware stack on the PICmicro microcontroller® is only eight levels
deep. So the worst case call between the application and ISR can only be
eight levels. The ISR only takes two stack levels, leaving six for the
application code. This can easily be reduced to one level, if necessary. The
ServiceUSB() function requires five levels, therefore, the ISR should never be
greater than three stack levels deep.

3.5.2 ROM
The code required to support the USB interrupt, including the chapter 9
interface calls, but not including the descriptor tables, is approximately 1.5
kBytes. The descriptor and string descriptor tables can each take up to an
additional 256 bytes.

3.5.3 RAM
With the exception of Common RAM discussed below, servicing the USB
interrupt requires approximately 40 bytes of RAM in Bank 2. This leaves all
the General Purpose RAM in Banks 0 and 1, plus half of Bank 2, available to
use.

3.5.4 Common RAM Usage
The PIC16C745/765 has 16 bytes of common RAM. These are the last 16
addresses in each bank, and all refer to the same 16 bytes of memory without
regard to which bank is currently addressed by the RP0, RP1 and IRP bits.
These are particularly useful when responding to interrupts. When an interrupt
occurs, the ISR doesn't immediately know which bank is addressed. With
devices that don't support common RAM, the W register must be provided for
in each bank. The PIC16C745/765 can save the appropriate registers in
common RAM and not waste a byte in each bank for the W register.
 2002 Microchip Technology Inc. DSxxxxxA-page 11

USB Firmware User’s Guide
3.6 Function Call Reference
The USB support firmware functions range from the most basic to advanced.
The basic functions initialize USB communication, get data from the bus, or
put data on the bus. More advanced functions deal with power-save modes
and reinitializing enumeration. This section also discusses common user
defined functions.

3.6.1 Basic Functions
• InitUSB {InitUSB()} - This function should be called by the main routine

after power-up. Be sure to precede the call with a 16 us delay to give
the USB peripheral time to reset before beginning enumeration. InitUSB
enables the USB peripheral by setting the DEV_ATT bit, thus prompting
the host to enumerate the device. The USB Reset interrupt is enabled
as well as the general USB interrupt. Global and peripheral interrupts
are also enabled.

• ConfiguredUSB {ConfiguredUSB} - A macro in both the Assembly and
Hi-Tech C versions of the firmware, ConfiguredUSB polls the enumera-
tion status bits to see if the device has been configured by the host.
ConfiguredUSB returns a 1 in the Z flag if the device is configured, or a
0 if it is not. This macro should be used after the call to InitUSB in order
to determine whether Endpoints 1 and 2 can be used (via GetEPn or
PutEPn). Endpoints 1 and 2 can only be used if the device is config-
ured.

• DeinitUSB {DeinitUSB()} - Causes the host to ignore the device. The
USB serial interface engine (SIE) is placed in suspend to conserve
power and the device essentially detaches itself from the bus. USB
interrupts are disabled.

• ServiceUSB {ServiceUSB()} - Call this function from the main program
loop to process USB transactions. Transactions from the host signal a
TokenDone. The enumeration process works off of commands specified
in chapter 9 of the USB specification(1). The transactions are parsed
and supply the appropriate response. See Section 4.12 for information
on how often to call this function.

• PutEPn {PutEPn(bytes, buffer[])} - Sends data to the host via
endpoint n. The number of bytes being sent must be specified in W {the
'bytes' argument}. The FSR and the IRP bits must point to the block of
data that will be sent. {The buffer to be sent should be entered as the
second argument, 'buffer[]'.} The Carry flag is set {the function returns a
one} when the UOWNs bit (BDndST:<7>) is set appropriately signifying
the data will be sent. The Carry flag is cleared {a zero is returned} if the
function fails to send the data.

Note: The assembly function call will be followed by the Hi-Tech C func-
tion call in {}. Any Hi-Tech C specific notes will also be in {}.
DSxxxxxA-page 12  2002 Microchip Technology Inc.

Processor Resources
• GetEPn {GetEPn(buffer[])} - Retrieves data from the host via
endpoint n. The desired location for the data must be loaded into FSR
and the IRP bits. {Specify the desired block of ROM the data is to be
placed in 'buffer[]'.} The Carry flag is set {a one is returned} when the
UOWNs bit (BDndST:<7>) is set appropriately and the data is retrieved
successfully. The Carry flag is cleared {a zero is returned} when the
function fails to retrieve the data.

3.6.2 Advanced Functions
• SoftDetachUSB {SoftDetachUSB()} - Clears the DEV_ATT bit electri-

cally disconnecting the device from the bus, then reconnecting so it can
be re-enumerated by the host. This process takes approximately 50 ms
to ensure that the host has seen the device disconnect and re-attach to
the bus. The benefit of this function is that it allows a device to re-enu-
merate as a new device on-the-fly. An example of such application is a
PS/2 dongle that enumerates a USB mouse if a PS/2 mouse is plugged
into it, or as a USB keyboard if a PS/2 keyboard is plugged into it.

• RemoteWakeup {RemoteWakeup()} - Prompts the host to reinitiate
communication with the PICmicro Microcontroller. If the host has
enabled the Remote Wake-up feature, the device can send a resume
signaling command to the host in order to bring the particular bus seg-
ment back into the active condition (see Section 7.1.7.5 in the USB
Specification 1.1.) RemoteWakup sends the resume signaling com-
mand.

• StallUSBEP/UnstallUSBEP {StallUSBEP(endpoint), UnstallUS-
BEP(endpoint)} - Sets or clears the stall bit in the endpoint control regis-
ter. Enter these functions with the desired endpoint in the W register {in
the 'endpoint' argument}. The stall bit indicates to the host that user
intervention is required, and until such intervention is made, further
attempts to communicate with the endpoint will not be successful. Once
the user intervention has been made, UnstallUSBEP will clear the bit
allowing communications to take place. These calls are useful to signal
to the host that user intervention is required. An example of this might
be a printer out of paper.
 2002 Microchip Technology Inc. DSxxxxxA-page 13

USB Firmware User’s Guide
3.6.3 User Defined Functions (Application Specific)
• HID_Get_Report - Services HID Get_Report requests. These requests

make it possible for HID devices to send data to the host via EP0.
Should developers choose to send data via EP0, they must write the
body of this function in order to handle the data. This function is located
in hidclass.asm {usb_ch9.c}. Writing this function requires understand-
ing Section 7.2.1 of the HID Class Definition, version 1.1.

• HID_Set_Report - Services HID Set_Report requests. These requests
make it possible for HID devices to receive data from the host via EP0.
Should developers choose to receive data via EP0, they must write the
body of this function in order to handle the data. This function is located
in usb_ch9.asm {usb_ch9.c}. Writing this function requires understand-
ing Section 7.2.2 of the HID Class Definition, version 1.1.
DSxxxxxA-page 14  2002 Microchip Technology Inc.

Processor Resources
3.7 Behind the Scenes
The PIC16C745/765 powers up with no interrupts enabled. The first thing that
happens is the main routine waits 16 us for the USB Serial Interface Engine
(SIE) to reset. Once this happens, InitUSB is executed. InitUSB clears the
error counters and enables the 3.3V regulator (UCTRL:<DET_ATT>) and the
USB Reset interrupt. This implements the requirement that USB devices
cannot respond to commands until the device has been reset.

When the 3.3V regulator is enabled, the host sees the device and recognizes
it as a low-speed device due to the pull-up resistor from the regulator output
(Vusb) to the D-line. The host resets the device to begin the enumeration
process. During the Reset process, the firmware initializes Endpoint0's Buffer
Descriptor Table (BDT) and clears out the USTAT FIFO.

At this point, the host will start issuing Setup transactions containing Chapter
9 requests to enumerate the device. Typically, it will start with a Get Device
Descriptor to find out what size packets the device will deal with. This
information is located in the 8th byte of the device descriptor. These Setup
transactions signal a TokenDone to the PICmicro microcontroller, which are
then processed by the ServiceUSB call. (ServiceUSB must be polled on a
regular basis after InitUSB is executed for enumeration to be successful. See
Section 4.12 for polling interval requirements.)

When the host sends a Setup token requesting the device descriptor, the
following occurs:

1. The USB Peripheral receives the Setup transaction, places the data por-
tion in the EP0 out buffer, loads the USTAT register to indicate which
endpoint received the data, and sets the Token Done (TOK_DNE) flag.
The Chapter 9 command then interprets the Setup token and sets up the
data to respond to the request in the EP0 In buffer. Then it sets the
UOWN bit to tell the SIE there is data available to send to the host.

2. Next, the host sends an IN transaction to receive the data from the setup
transaction. The SIE sends the data from the EP0 IN buffer and then sets
the TOK_DONE flag to notify the microcontroller that the data has been
sent. If there is additional data, the next buffer full is setup in the EP0 IN
buffer.

This token processing sequence holds true for the entire enumeration
sequence, which walks through the flow chart shown at the beginning of
Chapter 9 of the USB spec (see Figure 3.3.) The device starts off in the
powered state, transitions to RESET via the Reset interrupt, transitions to
ADDRESSED via the Set Address request (this request typically follows the
Get Device Descriptor request mentioned above), and transitions to
CONFIGURED via a Set Configuration command.
 2002 Microchip Technology Inc. DSxxxxxA-page 15

USB Firmware User’s Guide
Figure 3.3:

The USB peripheral detects several different errors and handles most of them
internally. The USB_ERR flag notifies the PICmicro microcontroller that an
error has occurred. No action is required by the PICmicro microcontroller
when an error occurs. Instead, the errors are simply acknowledged and
counted. There is no mechanism to pull the device off the bus if there are too
many errors. If this behavior is desired, it must be implemented in the
application.

The Activity interrupt is left disabled until the USB peripheral detects no bus
activity for 3 ms. At this point, the UIDLE flag is set and USBSleep is
executed. USBSleep suspends the USB peripheral and enables the activity
interrupt. The Activity interrupt then reactivates the USB peripheral, when bus
activity resumes, so processing may continue.

Attached

Hub
Configured

Hub Reset
or

Deconfigured

Powered
Suspended

Bus
Inactive

Bus Activity

Default

Reset

Suspended

Bus
Inactive

Bus Activity

Address Suspended

Bus
Inactive

Bus Activity

Configured Suspended

Bus
Inactive

Bus Activity

Power
Interruption

Reset
Address

Assigned

Device
Configured

Device
Deconfigured
DSxxxxxA-page 16  2002 Microchip Technology Inc.

USB FIRMWARE USER’S GUIDE

Chapter 4. USB Application Development
4.8 Recommended Tools
Several development tools are recommended when developing USB devices
with the PIC16C745/765: the in-circuit emulator and a USB protocol analyzer.
An in-circuit emulator will cut down on design time significantly over the “learn
and burn” method. A USB protocol analyzer monitors all USB traffic on the
bus. When USB communication is not behaving as desired, sometimes the
only way to track the problem down in a timely manner is to step through the
USB traffic generated when the problem occurred.

4.9 Deciding on Endpoint Usage
Before creating the descriptors, it is beneficial to spend some time deciding
what endpoints are required for a specific application. Section 1.2.1 provides
guidance as to what endpoint configurations are available to the user. As
previously mentioned, only two endpoints (consisting of a number and
direction) are allowed by the USB specification for low-speed devices. The
following is a list of possible endpoint configurations:

1. One OUT endpoint
2. One IN endpoint
3. Two OUT endpoints
4. Two IN endpoints
5. One OUT endpoint and one IN endpoint

If configuration 5 is desired, it is suggested that EP2 IN and EP2 OUT not be
chosen to satisfy this configuration. This will require re-allocating the endpoint
buffers in Set_Configuration. Three physical configurations will satisfy this
situational configuration and will ensure that this change is never necessary.
These physical configurations are:

1. EP1 IN and EP1 OUT
2. EP1 IN and EP2 OUT
3. EP2 IN and EP1 OUT
 2002 Microchip Technology Inc. DSxxxxxA-page 17

USB Firmware User’s Guide
4.10 Creating Descriptors
Creating the descriptors for a USB device can be one of the most challenging
parts of USB development. Especially for HID type devices. HID type devices
require the addition of a report descriptor to the standard descriptors outlined
in Chapter 9 of the USB specification. Microchip provides a series of technical
briefs that help with understanding descriptors (TB054, TB055, TB056,
TB057, and TB058.)

Learning to write descriptors is best done by studying examples. Microchip
provides numerous USB device examples and their respective descriptor sets
on its webpage: www.microchip.com

Before developing the functionality for a device, Microchip recommends
writing and testing the descriptors for that device. This is done by replacing
the descriptors in the Cursor in a Circle example with a new set of descriptors
and then testing the viability of these descriptors only. For instance, if a
developer wants to create a USB joystick, the descriptors should be created
first. Then the Cursor in a Circle descriptors should be replaced by the joystick
descriptors. Next, the main routine of the Cursor in a Circle example should
be modified to send dummy data for the joystick. The outcome of this will tell
the developer whether the device enumerates and whether the joystick data is
being communicated appropriately.

4.11 Assembly ISR Considerations
These considerations should be taken into account when writing an Interrupt
Service Routine in Microchip Assembly: Save W, STATUS, FSR and
PCLATH, which are the file registers that may be corrupted by servicing the
USB interrupt. The 'Cursor in a Circle' example provides a skeleton ISR which
does this, and includes tests for several other ISR bits.

4.12 Enumeration and Timing Considerations
As mentioned previously in Section 3.6.1, the InitUSB function prompts the
host to begin the enumeration process. Also mentioned earlier, in order for the
microcontroller to service the USB peripheral properly during enumeration,
(and thereafter) ServiceUSB must be called at regular intervals. This brings to
bear some timing considerations. The USB specification, section 9.2.6, gives
several different timing requirements for processing requests. Nominally the
PICmicro microcontroller has up to 50 ms to process most requests. Some
commands are allowed to take longer, but 50 ms is a good compromise for
polling ServiceUSB. Polling ServiceUSB faster than 50 ms will improve the
speed of enumeration, but is not necessary.
DSxxxxxA-page 18  2002 Microchip Technology Inc.

USB Application Development
Some requests must be serviced quickly, and thus these are processed via
the interrupt. These requests are: Rest, Resume (Activity), and the last part of
Set Address. The PICmicro microcontroller must quickly react to Reset and
Activity flags, as Setup Transactions could follow immediately and the
PICmicro microcontroller must be ready to accept and respond to these
transactions. Similarly, the new address must be set within 2 ms of the ACK in
response to the zero length packet.

4.13 Sending and Receiving Data
Sending data to and receiving data from the host computer is made simple
with the GetEPn and PutEPn functions. These functions are described in
Section 3.6.1. These functions setup/fill the registers in the Buffer Descriptor
Table appropriately, according to the endpoint involved with a particular
transfer (refer to section 10.6 in the PIC16C745/765 data sheet). As the Buffer
Descriptor Table registers are initialized at the time the PICmicro
microcontroller receives the Set_Configuration request, calling GetEPn or
PutEPn before the device is configured could have disastrous results. Using
the BDT for Endpoint 1 or 2 before they are initialized results in random RAM
locations being overwritten. As a result, the ConfiguredUSB macro should be
used to determine if the device is configured. When ConfiguredUSB returns a
one, the device is configured and it is safe to use USB GetEPn and PutEPn.

4.14 Optimizing the Firmware
This firmware has been created to provide developers with ready-made USB
functions so they don't have to create these functions for themselves. Most
developers will not utilize all of the functions in the Ch9 firmware. In order to
optimize the program memory, unused functions can be taken out of the
firmware. The following guidelines are a good place to start the optimization.

4.14.1 Converting/Removing GetEP1, GetEP2, PutEP1 and
PutEP2
In the assembly version of the firmware GetEP1, GetEP2, PutEP1, and
PutEP2, all macros are defined in usb_defs.inc. Instances of each of these
macros occur in usb_ch9.asm. If a developer does not utilize one or more of
these functions, space can be saved by removing the instance(s) not needed
from usb_ch9.asm.

In the Hi-Tech C version of the firmware, GetEP1 and PutEP1 are functions
found in usb_ch9.c. If a developer does not utilize one or both of these
functions, program memory can be saved by removing, or commenting out
the function(s) not needed. A developer wanting to use GetEP2 and/or
PutEP2 will need to create these functions for themselves. This is done by
simply copying GetEP1 or PutEP1 and then replacing the Buffer Descriptor
Table registers for EP1 with the corresponding Buffer Descriptor Table
registers for EP2.
 2002 Microchip Technology Inc. DSxxxxxA-page 19

USB Firmware User’s Guide
4.14.2 Optimizing the Code if Non-HID
The HID class is one of several classes suitable for low-speed USB. In
addition to these other classes, a vendor-defined class can be specified.
Should a developer use a class other than the HID class, any HID class
specific code in the firmware would be wasting space. In the assembly
version, the HID class specific code is found in the file hidclass.asm. In a case
where the HID class is not being utilized by a developer, this file and any
variables, or labels associated with it should be removed from the project. In
the C version, the HID class specific code is found at the end of usb_ch9asm
after the default mnemonic.

4.14.3 Removing Error Counting and LED Status Bits
Both versions of the firmware output the status of USB communication on
Port B. This feature is intended for use with the PICDEM USB circuit board
which drives an LED with each PORTB pin. The LEDs indicate the following
USB status information:

• RB0 - powered

• RB1 - default

• RB2 - addressed

• RB3 - configured

• RB4 - sleeping

• RB5 - EP0 active

• RB6 - EP1 active

• RB7 - EP2 active.

These USB status indicators will probably not be used in a finished product by
a developer although they are very helpful during development. All code
associated with the USB status LEDs can be eliminated from the program
memory by ensuring that SHOW_ENUM_STATUS is not defined at the top of
usb_ch9.asm (usb.h in the Hi-Tech C version.)

Similar to the USB status LEDs, code exists in the firmware that counts
various errors for debugging purposes. To eliminate this excess code from the
program memory, simply make sure that COUNTERRORS is not defined at
the top of usb_ch9.asm.
DSxxxxxA-page 20  2002 Microchip Technology Inc.

USB Application Development
4.15 References
• USB Specification, version 1.1

• HID Class definition, version 1.1

• PIC16C745/765 Rev. A1 Errata

• PIC16C745/765 Rev. A2 Errata

• Microchip Technical Brief TB054

• Microchip Technical Brief TB055

• Microchip Technical Brief TB056

• Microchip Technical Brief TB057

• Microchip Technical Brief TB058

• USB Complete, by Jan Axelson (www.lvr.com)
 2002 Microchip Technology Inc. DSxxxxxA-page 21

USB Firmware User’s Guide
NOTES:
DSxxxxxA-page 22  2002 Microchip Technology Inc.

DS00000A-page 23  2002 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-82350361 Fax: 86-755-82366086
China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

10/18/02

WORLDWIDE SALES AND SERVICE

	1.1 Introduction
	1.2 USB Basics
	2.3 Cursor in a Circle Example
	2.4 File Packaging
	3.5 Microcontroller Resource Usage
	3.6 Function Call Reference
	3.7 Behind the Scenes
	4.8 Recommended Tools
	4.9 Deciding on Endpoint Usage
	4.10 Creating Descriptors
	4.11 Assembly ISR Considerations
	4.12 Enumeration and Timing Considerations
	4.13 Sending and Receiving Data
	4.14 Optimizing the Firmware
	4.15 References
	Worldwide Sales and Service

