A. AFFANNI, A. BELLINI, G. Bellini, G. FRANCESCHINI, G. GUGLIELMI, C. TASSONI, "Battery choice and management for new-generation electric vehicles", IEEE Transactions on Industrial Electronics, October 2005, Vol. 52, No. 5 pp. 1343-1349.
Copyright - [Précédente] [Première page] [Suivante] - Home

Article : [PAP646]

Titre : A. AFFANNI, A. BELLINI, G. Bellini, G. FRANCESCHINI, G. GUGLIELMI, C. TASSONI, Battery choice and management for new-generation electric vehicles, IEEE Transactions on Industrial Electronics, October 2005, Vol. 52, No. 5 pp. 1343-1349.

Cité dans : [PAP644]  E. ARMANDO, B. BOAZZO, P. GUGLIELMI, Bull-ET: an High Performance Electric Kart, EVER Monaco, 2011, 7 pages.
Auteur : Affanni, A.
Auteur : Bellini, A.
Auteur : Franceschini, G.
Auteur : Guglielmi, P.
auteur : Tassoni, C. - Dept. of Inf. Eng., Univ. of Parma, Italy

Source : Industrial Electronics, IEEE Transactions on
Date : octobre 2005
Volume : 52
Issue : 5
Pages : 1343 - 1349
ISSN : 0278-0046
INSPEC_Accession_Number: 8590528
DOI : 10.1109/TIE.2005.855664
Lien : private/AFFANNI-01.pdf - 1170 Ko, 7 pages
Vers : Bibliographie

Abstract :
Different types of electric vehicles (EVs) have been recently designed
with the aim of solving pollution problems caused by the emission of
gasoline-powered engines. Environmental problems promote the adoption of
new-generation electric vehicles for urban transportation. As it is well
known, one of the weakest points of electric vehicles is the battery
system. Vehicle autonomy and, therefore, accurate detection of battery
state of charge (SoC) together with battery expected life, i.e., battery
state of health, are among the major drawbacks that prevent the
introduction of electric vehicles in the consumer market. The electric
scooter may provide the most feasible opportunity among EVs. They may be
a replacement product for the primary-use vehicle, especially in Europe
and Asia, provided that drive performance, safety, and cost issues are
similar to actual engine scooters. The battery system choice is a
crucial item, and thanks to an increasing emphasis on vehicle range and
performance, the Li-ion battery could become a viable candidate. This
paper deals with the design of a battery pack based on Li-ion technology
for a prototype electric scooter with high performance and autonomy. The
adopted battery system is composed of a suitable number of cells series
connected, featuring a high voltage level. Therefore, cell equalization
and monitoring need to be provided. Due to manufacturing asymmetries,
charge and discharge cycles lead to cell unbalancing, reducing battery
capacity and, depending on cell type, causing safety troubles or
strongly limiting the storage capacity of the full pack. No solution is
available on the market at a cheap price, because of the required
voltage level and performance, therefore, a dedicated battery management
system was designed, that also includes a battery SoC monitoring. The
proposed solution features a high capability of energy storing in
braking conditions, charge equalization, overvoltage and undervoltage
protection and, obviously, SoC information in order to optimize autonomy
instead of performance or vice-versa.

IEEE_Index_Terms : Battery management systems , Battery powered vehicles , Electric vehicles , Engines , Environmental factors , Motorcycles , Pollution , Transportation , Vehicle safety , Voltage
INSPEC_Controlled_Indexing : air pollution control , battery management systems , battery powered vehicles , braking , cost reduction , engines , motorcycles , optimisation , overvoltage protection , petroleum , secondary cells , storage management
Non_Controlled_Indexing : Li , battery management system , braking , charge equalization , consumer market , cost reduction , drive performance , electric scooter , electric vehicles , energy storage capacity , gasoline-powered engines , monitoring , optimization , overvoltage protection , pollution , safety , undervoltage protection , urban transportation
Keywords : Batteries , electric vehicles (EVs)


Bibliographie

TOP

References : 17
[01] : T. J. Miller, "Lithium-ion battery automotive applications and requirements", Proc. Seventeenth Annu. Battery Conf. Applications and Advances, pp.113 -118 2002
[02] : Y. Nishi, K. Katayama, J. Shigetomi, and H. Horie, "The development of lithium-ion secondary battery systems for EV and HEV", Proc. Thirteenth Annu. Battery Conf. Applications and Advances, pp.31 -36 1998
[03] : M. J. Isaacson, R. P. Hollandsworth, P. J. Giampaoli, F. A. Linkowsky, A. Salim, and V. L. Teofilo, "Advanced lithium-ion battery charger", Proc. Fifteenth Annu. Battery Conf. Applications and Advances, pp.193 -198 2000
[04] : D. Salerno and R. Korsunsky, "Practical considerations in the design of lithium-ion battery protection systems", Proc. IEEE APEC"98, vol. 2, pp.700 -707 1998
[05] : U. Koehler, F. J. Kruger, J. Kuempers, M. Maul, E. Niggemann, and H. H. Schoenfelder, "High performance nickel-metal hydride and lithium-ion batteries", Proc. IECEC"97, vol. 1, pp.93 -98 1997
[06] : H. Tsukamoto, "High reliability lithium rechargeable batteries for specialties", IEEE Aerosp. Electron. Syst. Mag., vol. 18, no. 1, pp.21 -23 2003
[07] : T. Yamazaki, K. Sakurai, and K. Muramoto, "Estimation of the residual capacity of sealed lead-acid batteries by neural network", Proc. IEEE PESC"98, pp.210 -214 1998
[08] : O. Caumont, P. Le Moigne, C. Rombaut, X. Muneret, and P. Lenain, "Energy gauge for lead acid batteries in electric vehicles", IEEE Trans. Energy Convers., vol. 15, no. 3, pp.354 -360 2000
[09] : T. Yanagihara and A. Kawamura, "Residual capacity estimation of sealed lead-acid batteries for electric vehicles", Proc. PCC Nagaoka"97, pp.943 -946 1997
[10] : J. Peng, Y. Chen, and R. Eberhart, "Battery pack state of charge estimator design using computational intelligence approaches", Proc. Fifteenth Annu. Battery Conf. Applications and Advances, pp.173 -177 2000
[11] : T. Fukuda, "Theory and applications of neural networks for industrial control systems", IEEE Trans. Ind. Electron., vol. 39, no. 6, pp.472 -489 1992
[12] : MATLAB. Neural Networks Toolbox, 2004 :The MathWorks Inc.
[13] : BSP 772 T Smart Power High-Side-Switch, 2004 :Infineon Technologies AG
[14] : A. Affanni, A. Bellini, C. Concari, G. Franceschini, E. Lorenzani, and C. Tassoni, "EV battery state of charge: Neural network based estimation", Proc. IEEE IEMDC"03, vol. 2, pp.684 -688 2003
[15] : P. Casasso, A. Fratta, G. Giraudo, P. Guglielmi, M. Pastorelli, and A. Vagati, "High-performance electric scooter", Proc. PCIM"03, 2003
[16] : A. Fratta, P. Guglielmi, G. M. Pellegrino, and F. Villata, "DC-AC conversion strategy optimized for battery or fuel-cell-supplied AC motor drives", Proc. IEEE ISIE"00, vol. 1, pp.230 -235 2000
[17] : P. Casasso, A. Fratta, G. Giraudo, P. Guglielmi, and F. Villata, "Feasibility, test and novel design of battery packs for EV scooter", Proc. IEEE IECON"03, vol. 2, pp.1649 -1654 2003

Lien : BSP772T.pdf - 16 pages, 359 Ko, BSP 772 T, Smart Power High-Side-Switch.

  [1] :  [DIV126]  T. LEQUEU, Librairie des fichiers PDF de composants, janvier 2018.


Mise à jour le dimanche 1 avril 2018 à 11 h 25 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.2 du 22 mars 2015.

Copyright 2018 : TOP

Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kart Masters Shop, La Boutique Kit Masters Shop and www.lequeu.fr.