

UNIVERSITÉ FRANCOIS-RABELAIS de TOURS

Institut Universitaire de Technologie

Département GENIE ELECTRIQUE ET INFORMATIQUE INDUSTRIELLE

Thierry LEQUEU

Etudes et Réalisations ER-GE3 – ER-IS4 – ERGE

IUT GEII - 2^{ème} année - Année 2011 / 2012

2.2 Présentation du logiciel Orcad version 9.x

2.2.1 Réalisation d'une carte - Introduction

Afin de réaliser le routage de la carte, il faut décrire le schéma du circuit du point de vue :

- des composants utilisés : nom des composants champ : VALUE ;
- des connections entre les composants : LINE + champ WIDTH pour spécifier la largeur des pistes
 ;
- la nature de l'empreinte physique (pastilles) associé au composants : champ PCB Footprint ;

Tous ces paramètres sont stockés dans le fichier NETLIST : nom de fichier **"projet.MNL"**. L'éditeur graphique **CAPTURE** permet la saisie du schéma à partir d'éléments disponibles dans différentes bibliothèques et la génération du fichier NETLIST.

Les différentes étapes de la réalisation du typon vont générer des fichiers de rapport, d'erreurs... Avant de commencer la saisie du schéma, il faut se définir un répertoire de travail sur le disque dur local de la machine : "C:\Travail\projet\".

L'expérience montre qui est préférable de ne pas utiliser des noms de fichiers et de répertoires dépassant 8 lettres (il doit rester des applications DOS dans le logiciel).

En fin de journée, il faut penser à sauvegarder l'ensemble du projet sur son disque personnel ET sur deux disquettes.

2.2.2 Principales commande de CAPTURE

- 1) Création d'un nouveau projet
- 2) Le gestionnaire de projet
- 3) Saisie du schéma
 - 3.1) Taille du schéma / Cartouche
 - 3.2) Sauvegardes
- 4) Placement de composants
 - 4.1) Le nom de la librairie est connu et elle est chargée
 - 4.2) La librairie est chargée mais son nom est inconnu
 - 4.3) La librairie n'est pas chargée et son nom est connu
 - 4.4) La librairie n'est pas chargée et son nom est inconnu
 - 4.5) Le composant a déjà été utilisé
- 5) Modification de référence ou valeur de composants / Editeur de propriétés
- 6) Placement de liaisons
 - 6.1) Liaisons simples : fils
 - 6.2) Liaisons multiples : bus
 - 6.3) Identification des liaisons
- 7) Alimentations
- 8) Commentaires
- 9) Impression
- 10) Gestion des symboles de composants

- 10.1) Modification du symbole d'un composant directement dans le schéma
- 10.2) Modification du symbole d'un composant dans une librairie
- 10.3) Copie de symboles du « Design Cache » dans une librairie
- 10.4) Création / Modification d'un symbole de composant

2.2.3 Préparation sous CAPTURE du routage de la carte

2.2.3.1 Les empreintes physiques

Une fois le schéma terminé et vérifier avec l'option "*DRC*", toujours dans CAPTURE, il faut affecter les empreintes physiques des composants. On les fera apparaître dans le schéma, ainsi que dans la liste du matériel "*PROJET.BOM*".

Pour la taille des pastilles, vois le fichier "PAD.LLB" (tableau 2.3).

Pour avoir une idée des différentes empreintes physiques disponibles, il faut ouvrir le module "LAYOUT PLUS \rightarrow Tools \rightarrow Library Manager". Dans la fenêtre "Libraries", il faut charger les librairies suivantes :

- "*TL_TODO.LLB*", pour les boîtiers TOxxx et Doxx ;
- "*TL_RC.LLB*", pour les résistances (RC04,...) et les condensateurs (CK06, RADIAL06...);
- "*TL_CI.LLB*", pour les boîtiers DIP des circuits intégrés (14DIP300,...);
- "*TL_DIV.LLB*", pour les composants divers (quatz, relais,...);
- "*TL_CON.LLB*", pour les connecteurs.

2.2.3.2 Affectation dans le schéma

Le nom de l'empreinte physique est reporté dans le champ "*PCB Footprint*". Pour accéder à ce champ, il faut sélectionner TOUT les composants avec "*Edit* \rightarrow *Select All*", puis "*Edit* \rightarrow *Properties* \rightarrow *Parts*". Il faut s'assurer que le champ "*PCB Footprint*" est visible en sélectionnant la colonne "*PCB Footprint* \rightarrow *Display* \rightarrow *Value Only*". On peut alors remplir avec l'empreinte physique à partir de ce tableau, ou dans le schéma directement.

Pour faire apparaître le nom de l'empreinte dans la liste des composants, il faut ajouter dans le menu "Tools \rightarrow Bill of Materials" dans le champ "Header" à la suite la séquence "\tEnpreinte" et dans le champ "Combined Property string", la séquence "\text{{PCB Footprint}}".

2.2.3.3 Création de la NETLIST

Il faut ensuite créer la liste des équipotentielles "*NETLIST*". Pour cela, il faut se placer dans la fenêtre de gestion du projet et sélectionner "*PROJET.DSN* \rightarrow *Tools* \rightarrow *Create Nelist* \rightarrow *Onglet Layout*" avec les options

2.2.4 Bibliographie

[LIVRE213]	ALS Design, OrCAD CAPTURE version 9.x - Saisie de schéma, mars 1999, 72 pages.
[LIVRE214]	ALS Design, OrCAD LAYOUT version 9.x - Placement / Routage, mars 1999, 214 pages.
Site Web	http://www.orcad.com
[DATA188]	Académie de CAEN, Centre de Ressources, Génie Electrique.
Site Web	http://www.discip.crdp.ac-caen.fr/crgelec/support_logiciel.htm.
[DIV195]	P. POISSON, <i>Réalisation d'un circuit imprimé - Projet Electronique Adaptation</i> , 1° Année - Département GEII, octobre 2001.

2.3 Routage de la carte : LAYOUT

2.3.1 Création d'une nouvelle carte

Le fichier technologique	défaut.TCH
Charger la netlist	*.MNL
Sauvegarder la carte	*.MAX

Associer les composants s'il manque des empreintes physiques.

Configurer : la grille de placement, de routage ; la largeur des pistes ; le nombre de faces autorisées pour le routage.

2.3.2 Taille des pistes

Le tableau des fils : Spreadsheet NET. MIN / CON / MAX

	Millimètres :	En Mils :	Courant max. piste étamée 70 µm :
XXL	4,50 mm		10 A
Extra large	2,54 mm	100 mils	6 A
Large	1,00 mm	40 mils	
Moyenne	0,60 mm	25 mils	2 A
Etroite	0,40 mm	15 mils	

2.3.3 Taille des pastilles

Librairie : PAD.LLB - Dimmensions en mils : 100 mils = 2,54 mm = 0,1 inches.

Les pastilles sont de trois types : RONDE, CARRE et OVAL.

Le diamètre de perçage (Drill Size & Drill Weight) est de 20 mils.

Tableau 2.3. Dimensions des pastilles (orcad\modules.xls / PAD).

ROUND			RECTANGLE			sç	UARE		OBLONG				mm
	Width	Height		Width	Height		Width	Height		Width	Height		
RONDE75	75	75	RECT75	65	75	CARRE75	75	75				75	1,905
RONDE80	80	80	RECT80	60	80	CARRE80	80	80				80	2,032
RONDE100	100	100	RECT100	50	100	CARRE100	100	100	OVAL100	50	100	100	2,540
RONDE110	110	110	RECT110	60	110	CARRE110	110	110	OVAL110	80	110	110	2,794
RONDE120	120	120	RECT120	80	120	CARRE120	120	120	OVAL120	80	120	120	3,048
RONDE150	150	150	RECT150	80	150	CARRE150	150	150	OVAL150	100	150	150	3,810
RONDE200	200	200	RECT200	150	200	CARRE200	200	200	OVAL200	120	200	200	5,080
RONDE400	400	400	RECT400	300	400	CARRE400	400	400	OVAL400	300	400	400	10,160

2.3.4 Principales commande de LAYOUT

- 1) AFFECTATION DES EMPREINTES SOUS CAPTURE.
- 2) LANCEMENT DE LAYOUT.
- 3) PARAMÈTRES DU FICHIER DE TECHNOLOGIE « thierry.tch ».
- 4) LES ICÔNES DE LAYOUT.
- 5) LES PRINCIPAUX TABLEAUX DE LAYOUT.
- 6) LES PRINCIPAUX RACCOURCIS À RETENIR.
- 7) DESSINER LE CONTOUR DU CIRCUIT IMPRIMÉ.
- 8) PLACER LES COMPOSANTS.
- 9) ROUTAGE MANUEL D'UN CIRCUIT.
- 10) ROUTAGE AUTOMATIQUE D'UN CIRCUIT.
- 11) PLACER DES PLANS DE MASSE.
- 12) PLACER DU TEXTE.
- 13) IMPRIMER LES DIFFÉRENTES FACES DU CIRCUIT IMPRIMÉ.
- 14) FLUX D'INFORMATIONS ENTRE ORCAD CAPTURE ET ORCAD LAYOUT.
- 15) CORRESPONDANCE ENTRE LES SYMBOLES DE CAPTURE ET LAYOUT.
- 16) CRÉATION D'EMPREINTES.

2.3.5 Bibliographie

- [LIVRE214] ALS Design, OrCAD LAYOUT version 9.x Placement / Routage, mars 1999, 214 pages.
- Site Web http://www.orcad.com
- [DATA188] Académie de CAEN, Centre de Ressources, Génie Electrique.
- Site Web http://www.discip.crdp.ac-caen.fr/crgelec/support_logiciel.htm.
- [DIV195] P. POISSON, Réalisation d'un circuit imprimé Projet Electronique Adaptation, 1° Année - Département GEII, octobre 2001.
- [REVUE113] Revue N° 242, Electronique Pratique, Décembre 1999.
- [REVUE080] Technologie, N° 103, septembre–octobre 1999.

ROUND			RECTANGLE			SQUARE					Mils	mm	mm	Mils					
	Width	Height	Drill		Width	Height	Drill		Width	Height	Drill		Width	Height	Drill			0,6	24
RONDE75	75	75	31	RECT75	65	75	31	CARRE75	75	75	31					75	1,91	0,8	31
RONDE80	80	80	31	RECT80	60	80	31	CARRE80	80	80	31					80	2,03	1,0	39
RONDE100	100	100	39	RECT100	50	100	39	CARRE100	100	100	39	OVAL100	50	100	24	100	2,54	1,2	47
RONDE110	110	110	39	RECT110	60	110	39	CARRE110	110	110	39	OVAL110	80	110	31	110	2,79	1,5	59
RONDE120	120	120	47	RECT120	80	120	47	CARRE120	120	120	47	OVAL120	80	120	31	120	3,05	2,0	79
RONDE150	150	150	47	RECT150	80	150	47	CARRE150	150	150	47	OVAL150	100	150	39	150	3,81	2,5	98
RONDE200	200	200	59	RECT200	150	200	59	CARRE200	200	200	59	OVAL200	120	200	59	200	5,08	3,0	118
RONDE400	400	400	165	RECT400	300	400	165	CARRE400	400	400	165	OVAL400	300	400	165	400	10,16	3,2	126
		<u> </u>								1						160	4,06	4,0	157
RONDE240	240	240	126	PL130	70	130	47									165	4,19	4,2	165
RONDE300	300	300	126	CON80	60	80	39									200	5,08	5,0	197
	<u> </u>	<u> </u>			<u> </u>		1	ſ								236	5,99	6,0	236
Rondelle	M3	normale	Φ	exterieur	=	6,1 mm	=	240 mils								276	7,01	7,0	276
Rondelle	M4	normale	Φ	exterieur	=	7,6 mm	=	300 mils								300	7,62	8,0	315
																354	8,99	9,0	354
																394	10,01	10,0	394