Tutorial:

Advanced Modeling and Simulation of Power Electronic Systems EPE 2011, Birmingham

Speakers		Dr. John Schönberger, Research & Applications Engineer, Plexim GmbH Zurich Kris Eberle, Applications Engineer, Plexim Inc. Boston
Morning	Afternoon	
09:00	14:00	Registration
09:15	14:15	Introduction
		Simulation of Power Electronic Systems
		 Different levels of simulation
		 Physical vs. behavioural component models
		 Variable and fixed step operation
		Simulation of Continuous Systems
		 Taylor series approximation as the basis of a solver algorithm
		 Non-stiff/explicit solvers, stiff/implicit solvers
		 Stability region of stiff and non-stiff solvers
		 Typical causes of stiffness
		Step size control
		 Event detection and handling of discontinuities
		 Avoiding missed events
		 Solver function calls during major and minor time steps
11:00	15:00	Coffee Break
11:30	15:30	Tips to Achieve a Fast Simulation
		 Simulation tuning to maximise time step and minimise calculations
		 Averaged converter modeling
		Efficient generation of PWM
		Fast Thermal Simulations
		 Overview of lookup table approach
		 Electrical feedback of thermal losses
		 Techniques for calculating the steady-state operating point - online average cycle loss calculation and Newton Raphson analysis.
13:00	17:00	End of Tutorial

plexim

Tutorial:

Advanced Modeling and Simulation of Power Electronic Systems EPE 2011, Birmingham

Tutorial Objectives	The goal of this tutorial is to provide insight into the operation of the continuous variable- step solvers that are used for simulating power electronic systems. The solver is often viewed as a 'black box' since this is typically not a topic that is taught in electrical engineering courses. The idea is to shed light on the inner workings of the solver so that the user can understand better how to configure the solver for the problem at hand. The solver operation will be presented within the context of power electronic system simulation and real-life examples will be given in order to reinforce the presented concepts.
	The second objective is to explain practical techniques for speeding up a large system model that comprises dozens of states. The correct simulation approach can make the difference between a simulation that takes several minutes or several hours. Averaged converter modeling will be discussed since this can speed up the simulation by over an order of magnitude. Thermal modeling will also be discusses because simulating a combined electrical-thermal model can be problematic due to the large thermal time constant.
Target Audience	The target audience is power electronics engineers who use simulation tools as a part of their tool chain and who wish to learn more about solver operation and advanced simulation techniques.

