

Etude et Réalisation Régulation du courant moteur du Kart

Giovannangeli Julien Lanoë Michaël Groupe TP : S2

Le 26 mars 2007

Introduction

Sommaire

Présentation du projet.

- But du projet.
- Cahier des charges.

Partie Electronique/Automatique.

- Offset et réglage de la pédale de l'accélérateur.
- Identification du moteur.

Programmation.

- Objectif et mise en place la programmation
- Le Convertisseur Analogique Numérique (CAN).
- Routine d'interruption.
- Le PWM.
- Relation PC-Moteur.

Présentation du projet.

•But du projet

→Réguler le courant moteur du karting

Cahier des charges

Capteur de courant :
 Tension de sortie : -4V <Vs< +4V.

Il faut adapter cette tension à celle du microcontroleur (0/+5V).

Microcontroleur :

- ≻ ATmega8535.
- > Tension d'entrée 0/+5V.
- > Utilisation de CodeVision AVR Studio.
- > Utilisation de fonctions: CAN, PWM, routine d'interruption.

Présentation du projet. Cahier des charges

→Diagramme sagittale

Présentation du projet.

Cahier des charges Synoptique de la régulation du courant moteur

La pédale du Kart

Partie Electronique/Automatique. La pédale du Kart

La pédale est reliée à une résistance variable de $5k\Omega$

· · · · · · · · · · · ·						ANALOG 20SH100L		
JP1 Pédale 02PL2 ← ∾			+15 · · ·	5⊻ 		Vc	$\begin{array}{c c} & \blacksquare & 1 \\ \hline & 1 \\ \hline & 3 \\ \hline & 3 \\ \hline & \blacksquare & 3 \\ \hline & 1 \\ \hline & 3 \\ \hline & 1 \\ \hline & 3 \\ \hline & 1 \\ \hline \hline & 1 \\ \hline \hline \hline & 1 \\ \hline \hline \hline & 1 \\ \hline \hline \hline \hline \\ \hline \hline$	
	· · ·	- ·		≻ R8 ≻ 5k ⊳ RC04			$ \begin{array}{c c} 9 \\ \hline 9 \\ \hline 9 \\ \hline 11 \\ \hline 11 \\ \hline 13 \\ \hline 13 \\ \hline 15 \\ \hline 9 \\ \hline 13 \\ \hline 15 \\ \hline 9 \\ \hline 16 \\ \hline $	
	7 1 7 1	 	· · · ·	× R9 []	-	· · ·	$\begin{array}{c c} 17 \\ \hline ADC6 \\ \hline GND \\ \hline 20 \\ \hline 20 \\ \hline ADC7 \\ \hline GND \\ \hline 19 \\ \hline 20 \\ \hline 19 \\ \hline 19 \\ \hline ADC7 \\ \hline GND \\ \hline 18 \\ \hline 20 \\ \hline 18 \\ \hline 20 \\ \hline 18 \\ \hline 10 \\ $	
				> 5k > RC04				
							VS2	

Le capteur de courant

Partie Electronique/Automatique.

Le capteur de courant

Le capteur de courant délivre une tension entre -4V et +4V alors que le microcontroleur supporte du 0/+5V d'où un montage d'adaptation de tension

> OFFSET +Abaisseur de tension.

Partie Electronique/Automatique. Le capteur de courant

Partie Electronique/Automatique.

Schéma final : pédale + montage éléctronique

Partie Electronique/Automatique. Schéma final

Partie Electronique/Automatique.

Aspect automatique du projet: Identification du moteur

Partie Electronique/Automatique. Aspect automatique

Pour identifier le système on a plusieurs méthodes d'identification:

- Broïda
- Strejc
- Zeigler & Nichols
- •

A partir du <u>relevé de la sortie du système soumit à un échelon de tension</u>:

Objectif et mise en place la programmation

Programmation. *Objectif de la programmation*

Commander le hacheur

- Envoyer un signal Vα en créneau positif avec une fréquence et un rapport cyclique notée α.
- Comparaison entre 2 tensions : Vc et Vse
- \succ Traitement de l'écart ε : action P, PI, PD ou PID

Programmation. *Mise en place de la programmation*

Prise en main du logiciel Code Vision AVR
Nouvel environnement
outil Code Wizard : Générateur de programme automatique

Programmation.

Mise en place de la programmation

Le Convertisseur Analogique Numérique (CAN)

→2 tensions à convertir

- Tension de consige Vc
- Tension de mesure Vm

→Une seule tension

- Stratégie n°1 : utiliser un ancien programme 'voltemètre.c
- Affichage sur écran LCD

/*Déclaration des bibliotèques*/
#include<mega8535.h>
#include<lcd.h>
#include<delay.h>
#include<delay.h>
#include<stdio.h>
/*Prototypes de fonctions*/
interrupt[ADC_INT]void adc_isr(void);
void brdInit(void);
/*Déclaration des variables*/
int tension;
unsigned char tampon[20];

```
/*programme principal*/
void main (void)
```

```
brdInit();
#asm("sei")
ADCSRA=0x40;
while(1)
{
```

//on lance une seule fois la conversion

Définition des fonctions

```
void brdInit(void)
{
    #asm
    .equ lcd port=0x15
```

#endasm lcd_init(16);

lcd_clear(); // cette fonction permet d'effacer l'écran LCD.

> ADMUX=0b01000000; ADCSRA=0b10101110; SFIOR=0x00;

interrupt[ADC_INT]void
adc_isr(void)

lcd_gotoxy(0,0); lcd_putsf(" Tension 1 ");

tension=ADCW;

sprintf(tampon,"V=%5d",tension);
 lcd_gotoxy(0,1);
 lcd_puts(tampon);
 delay_ms(100);

 \rightarrow 2 tensions Stratégie n°2 : utiliser Code Wizard. > Lignes de codes pour configurer le CAN #define ADC_VREF_TYPE 0x00 [suite du prorammme ...] // Analog Comparator initialization // Analog Comparator: Off // Analog Comparator Input Capture by Timer/Counter 1: Off ACSR=0x80; SFIOR=0x00; // ADC initialization // ADC Clock frequency: 1000,000 kHz

// ADC High Speed Mode: // ADC Auto Trigger Source: ADMUX=ADC_VREF_TYPE; ADCSRA=0x84; SFIOR&=0xEF;

Code Wizard : création d'une fonction prototype de la fonction unsigned int read adc(unsigned char adc input); Définition de la fonction unsigned int read_adc(unsigned char adc_input) { ADMUX=adc_input|ADC_VREF_TYPE; // Start the AD conversion ADCSRA = 0x40; //autorisation de la conversation // Wait for the AD conversion to complete while ((ADCSRA & 0x10)==0);ADCSRA|=0x10; return ADCW;

Ordinogramme d<u>e la fonction</u>

Ordinogramme : Affichage des deux tensions sur LCD

Programmation.

Mise en place d'une routine d'interruption

Programmation.

Mise en place d'une routine d'interruption

Objectif : effectuer des opérations à un interval régulier

- > Utilisation du TIMER 0
- Configuration du TIMER 0

-	🔅 Code Wizard AVR - untitled.cwp 🛛 🔀	
	Code WizardAVR - untitled.cwp File Help USART Analog Comparator ADC SPI 12C 1 Wire 2 Wire (I2C) LCD Bit-Banged Project Information Chip Ports External IRQ Timer 0 Timer 1 Timer 2 Watchdog Clock Source: System Clock Clock Value: 2000,000 kHz Mode: Normal top=FFh	fréquence d'horloge des interruptions
	✓ Overflow Interrupt ✓ Overflow Interrupt Compare Match Interrupt Timer Value: 0 h Compare: 0	

Programmation. *Mise en place d'une routine d'interruption*

Principe des interruptions = principe d'échantillonnage

Programmation. *Mise en place d'une routine d'interruption*

 Lignes de code relatives à la configuration non abordée dans notre soutenance.
 Fonction fournie par Code Wizard : interrupt [TIM0_OVF] void timer0_ovf_isr(void);

Ensemble des opérations placées dans la routine

Programmation.

Mise en place d'une routine d'interruption

Test n°1 : mis à 1 et 0 alternativement du PIN 0 du PORTD

Programmation. *Mise en place d'une routine d'interruption*

→Test n°2 : Convertion insérée dans la routine

Mise en place de la fonction PWM

Objectif : Création d'un signal en créneau
 > signal de commande Va
 > Utilisation d'un nouveau TIMER : TIMER 1
 > Configuration : Code Wizard

TCCR1A=0x81; **TCCR1B=0x81**; **TCNT1H=0x00; TCNT1L=0x00;** ICR1H=0x00; ICR1L=0x00; OCR1AH=0x00; OCR1AL=0x40; // registre important. Permet de changer a OCR1BH=0x00; OCR1BL=0x00;

Traitement des tensions converties: > on note ɛc l'écart corrigé entre Vc et Vm • ɛc= Va

Test n°1 : correction à action P : Kr=2 La grandeur numérique Va sera rentrée dans le registre OCR1AL

Nouvelle définition de la routine d'interruption

{

```
interrupt [TIM0_OVF] void timer0_ovf_isr(void)
```

```
// Place your code here
Vc=read_adc(1)/4;
Vm=read_adc (6)/4;
Epsilon=Vc-Vm;
VAlpha=GAIN*Epsilon;
if (VAlpha<=0)
VAlpha=0;
if(VAlpha>=255)
VAlpha=255;
if (VAlpha>=0 && VAlpha<=255 )
{OCR1AL=VAlpha;}
```

Routine d'affichage sur LCD effectuée dans la boucle infinie

Ordinnogramme de la fonction routine d'interruption : Traitement des signaux numériques

Relation PC Moteur

Programmation. *Relation PC-Moteur*

Test n°1 : Synoptique du test

Prochain test : séance suivante.

Programmation. *Relation PC-Moteur*

