

AVR918: Using the Atmel Tiny Programming
Interface (TPI)

Features
• TPI driver for devices with TPI support
• Programming example for:

- NVM read and write
- Lock-byte read and write
- Fuse-byte read and write
- Calibration byte read
- Device ID read
- Chip erase

• Compatible with AVROSP (AVR911)

1 Introduction
The Atmel® Tiny Programming Interface (TPI) is featured on selected low-end Atmel
AVR® microcontrollers, and allows external programmers to access the nonvolatile
memory (NVM) of the device. The interface provides access to device lock bits, the
program flash memory, and the signature, configuration, and calibration sections.

The TPI can be accessed via three pins:

• RESET: TPI enable input
• TPICLK: TPI clock input
• TPIDATA: TPI data input/output

Figure 1-1. The Atmel Tiny Programmer Interface for external programmers.

ATtiny4/5/9/10

TPIDATA/PB0

GND

TPICLK/PB1

PB3/RESET

VCC

PB2

TPI
CONN

APPLICATION

+5V

Refer to the corresponding device datasheet for more details on the TPI protocol.

This application note describes how to use an AVR microcontroller to access a
device with TPI. The design uses the AVR open source programmer (AVROSP),
as described in the Atmel AVR911 application note.

8-bit
Microcontrollers

Application Note

Rev. 8373A-AVR-02/11

http://www.atmel.com/dyn/resources/prod_documents/doc2568.pdf�

2 AVR918
8373A-AVR-02/11

2 Nonvolatile memories
This section describes the nonvolatile memory (NVM) sections that can be accessed
via the Atmel Tiny Programming Interface (TPI). Access methods described in this
section are specific to devices with TPI, and may not apply to other Atmel AVR
microcontrollers.

The embedded NVM has:

• Nonvolatile memory lock bits
• Flash memory with four sections

2.1 Nonvolatile memory lock bits
Lock bits provide additional security for the device, when programmed. Lock bits can
only be erased by a chip erase; hence, it is required to program them after the other
NVM sections are programmed. By default, lock bits are un-programmed (set to 1).

2.2 Flash memory
The embedded flash memory has four sections:

• Code (program memory)
• Configuration
• Signature
• Calibration

2.2.1 Code (program memory) section

As the program memory cannot be accessed directly, it has been mapped to the data
memory. The mapped program memory begins at byte address 0x4000 in data
memory (see device datasheets for further information). This means that programs in
program memory are executed starting from address 0x0000, but the same memory
area is addressed starting from 0x4000 when accessed via the data memory.

Internal write operations to flash program memory have been disabled, and program
memory, therefore, appears to firmware as read-only. Flash memory can only be
written to by an external programmer.

2.2.2 Configuration section

The configuration byte resides in the configuration section. The following functions
can be configured by writing appropriate values to the configuration byte:

• Brown-out detection level
• System clock output on port pin
• Watchdog timer on
• External reset disable
Changes to the configuration bit values will take effect after the device leaves
programming mode.

Please consult individual device datasheets for further details on available functions.

 AVR918

 3
8373A-AVR-02/11

2.2.3 Signature section

The signature section is used to store information such as the device signature.
Typically, the device signature consists of three bytes.

Consult individual device datasheets for signature values.

2.2.4 Calibration section

The calibration section typically contains one calibration byte for the internal oscillator.
This byte contains the calibration value, which is stored at device production. The
calibration section is read-only.

4 AVR918
8373A-AVR-02/11

3 TPI target implementation
The Atmel Tiny Programming Interface (TPI) consists of two layers, the access layer
and the physical layer. The TPI physical layer supports two modes of operation,
transmit and receive. By default, the physical layer is in receiving mode, and waiting
for a start bit. The TPI access layer controls the mode of operation.

3.1 TPI frame
The TPI physical layer supports a fixed frame format. A frame consists of one
character, eight bits in length, one start bit, an even parity bit, and two stop bits. Data
is transferred with the least-significant bit first. A break character of a 12-bit-long low
level is supported; this can be extended beyond 12 bits, also.

Figure 3-1. Serial frame format.

TPIDATA

TPICLK

SP1ST SP2 IDLE/STIDLE PD1D0 D7

Symbols used in Figure 3-1:

ST: Start bit (always low)
D0-D7: Data bits (least-significant bit sent first)
P: Parity bit (using even parity)
SP1: Stop bit 1 (always high)
SP2: Stop bit 2 (always high)

3.2 TPI physical layer
The TPI physical layer handles the basic low-level serial communication. The physical
layer uses a bidirectional, half-duplex, serial receiver and transmitter. It includes
serial-to-parallel and parallel-to-serial data conversion, start-of-frame detection,
frame-error detection, parity-error detection, parity generation, and collision detection.

The TPI physical layer operates synchronously on the TPICLK signal provided by the
external programmer. Data is changed at falling edges, and sampled at rising edges.

3.2.1 Serial data reception

In receive mode, data reception is started as soon as a start bit has been detected.
When the complete frame is present in the shift register, the received data will be
available for the TPI access layer.

There are three possible exceptions in the receive mode: frame error, parity error,
and break detection. All these exceptions are signaled to the TPI access layer, which
then enters the error state, and puts the TPI physical layer into receive mode, waiting
for a break character.

3.2.2 Serial data transmission

Transmission is initiated by loading the shift register with the data to be transmitted.
When the shift register has been loaded with new data, the transmitter shifts one
complete frame out on the TPIDATA line at the transfer rate given by TPICLK.

 AVR918

 5
8373A-AVR-02/11

If a collision is detected during transmission, the output driver is disabled. The TPI
access layer enters the error state, and the TPI physical layer is put into receive
mode, waiting for a break character.

3.2.3 Direction change

A guard-time mechanism is implemented in the physical layer to ensure correct timing
during direction change. When the TPI physical layer changes from receive to
transmit mode, a configurable number of additional idle bits are inserted before the
start bit is transmitted. The default guard time is 128 bits. The minimum transition time
between receive and transmit mode is two idle bits. The total idle time is the specified
guard time plus two idle bits.

When the external programmer changes from receive mode to transmit, a minimum of
one idle bit should be inserted before the start bit is transmitted.

3.3 TPI access layer
The TPI access layer controls the character transfer direction on the TPI physical
layer. It also handles the recovery from the error state after an exception. TPI access
layer handles the communication in message format. Each message consists of a
byte-sized instruction followed by operands. The instructions are always sent from the
programmer, while the operands can be from either the programmer or the device,
depending on the type of the instruction.

The control and status space (CSS) of the Atmel Tiny Programming Interface is
allocated for control and status registers in the TPI access layer. The access layer
can also access the data space, either directly or indirectly, using the pointer register
(PR) as the address pointer.

Consult the individual device datasheet for further information on exception handling.

6 AVR918
8373A-AVR-02/11

4 External programmer implementation
The programmer described in this application note uses a USART to implement the
TPI. The USART is used in synchronous mode, and XCK is used for TPICLK. The
AVROSP, described in the Atmel AVR911 application note, is used as the user
interface, and the programmer implements the AVROSP protocol via another USART.

4.1 Device selection
The implementation is tested with the Atmel ATmega324P, though any Atmel AVR
device with two onboard USARTs can be used with minimal changes to the
implementation. The device used in the external programming requires two USARTs,
one for implementing TPI and another for AVROSP communication.

The device is driven by an external 11.059MHz crystal.

4.2 Target interface
The XCK pin is used as TPICLK, and RXD and TXD have been connected to
TPIDATA via two 220Ω resistors, as shown in Figure 4-1.

Figure 4-1. TPI target interface.

4.2.1 TPI enabling

The following sequence enables the TPI (see Figure 4-2 for guidance):

• Apply 5V between VCC and GND
• Wait tTOUT and then set the RESET pin low. This will reset the device and enable

the TPI physical layer. The RESET pin must then be kept low for the entire
programming session

• Wait tRST
• Keep the TPIDATA pin high for 16 TPICLK cycles

NOTE Consult individual device datasheet for tTOUT and tRST values.

http://www.atmel.com/dyn/resources/prod_documents/doc2568.pdf�

 AVR918

 7
8373A-AVR-02/11

Figure 4-2. TPI enable sequence.

RESET

t RST

TPIDATA

TPICLK

16 x TPICLK CYCLES

4.2.2 TPI instruction set

TPI has a compact instruction set, as shown in Table 4-1. These instructions can be
used to access the NVM control status space and the data space. The external
programmer can access the NVM controller and the NVM memories by using these
instructions. All the instructions are one byte. Except for the SKEY instruction, all
other instructions require one byte of operand to follow. SKEY requires eight bytes to
follow.

Table 4-1. TPI instruction set.
Mnemonic Operand Description Operation

SLD data, PR Serial LoaD from data space using
indirect addressing

data ← DS[PR]

SLD data, PR+ Serial LoaD from data space using
indirect addressing and post-
increment

data ← DS[PR]

SST PR, data Serial STore to data space using
indirect addressing

DS[PR] ← data

SST PR+, data Serial STore to data space using
indirect addressing and post-
increment

DS[PR] ← data

SSTPR PR, a Serial STore to Pointer Register
using direct addressing

PR[a] ← data

SIN data, a Serial IN from data space data ← I/O[a] SIN data

SOUT a, data Serial OUT to data space I/O[a] ← data

SLDCS data, a Serial LoaD from Control and
Status space using direct
addressing

data ← CSS[a]

SSTCS a, data Serial STore to Control and Status
space using direct addressing

CSS[a] ← data

SKEY Key, {8{data}} Serial KEY Key ← {8{data}}

4.2.3 Entering external programming mode

In order to enter the programming mode, it is required to enable the TPI
communication by following the procedure described in Section 4.2.1, TPI enabling,
on page 6. After enabling the TPI:

• Send an SKEY instruction via the TPI
• Send the NVM program enable data (0x1289AB45CDD888FF) byte by byte via

the TPI
• Poll the status of the NVMEN bit in TPISR until it has been set

8 AVR918
8373A-AVR-02/11

4.2.4 Exiting external programming mode

In order to exit the programming mode, the following procedure must be followed:

• Clear the NVM enable bit in TPISR
• Release RESET

4.2.5 Accessing the NVM

NVM is mapped to the data memory, and, hence, can be accessed via those mapped
locations in the data memory.

The programming task is started after loading the appropriate NVM command (Table
4-2) to the nonvolatile memory command register (NVMCMD). The NVMBUSY flag bit
in the nonvolatile memory control and status register (NVMCSR) will be set when the
NVM controller is performing the instructed operation. The NVM command register is
blocked for write access as long as the NVMBUSY flag is active. This is to ensure
that the current command is fully executed before starting a new command.

4.2.5.1 NVM commands

NVM commands can be classified into general, section, and word operations,
depending on the operation. In total, there are four commands for accessing NVM, as
described in Table 4-2.

Table 4-2. NVM commands.
Operation type NVMCMD Mnemonic Description

General 0x00 NO_OPERATION No operation

General 0x10 CHIP_ERASE Chip erase

Section 0x14 SECTION_ERASE Section erase

Word (1) 0x1D WORD_WRITE Word write

Double word (2) 0x1D DWORD_WRITE Write double word

Flash words (3) 0x1D CODE_WRITE Write flash words

Notes: 1. ATtiny4/5/9/10
2. ATtiny20
3. ATtiny40

4.2.5.2 Addressing the flash

The data space uses byte accessing, but because the flash sections are accessed as
words and organized in pages, the byte address of the data space must be converted
to the word address of the flash section. The page address and the word address
together form the absolute address of a word in flash. The most-significant bits of the
data space address select the NVM lock bits or the flash section mapped to the data
memory. The least-significant bit of the flash section address is used to select the low
or high byte of the word.

During programming, the data space location is pointed to by the pointer register
(PR), where the address must be stored before data is accessed. The sequence to
store an address in the pointer register is as follows:

• Send a SSTPR instruction with the LSB set to 0
• Send the low byte of the address
• Send a SSTPR instruction with the LSB set to 1

 AVR918

 9
8373A-AVR-02/11

• Send the high byte of the address

4.2.5.3 Reading the flash

The flash can be read from the data memory mapped locations one byte at a time.
For read operations, the least-significant bit (bit 0) is used to select the low or high
byte in the word address. If this bit is zero, the low byte is read, and if it is one, the
high byte is read. The sequence to read a data byte from NVM is as follows:

• Send a SLD_POSTINC instruction
• Wait for an idle time of two clock cycles plus the guard time set in TPIPCR for

reception
• Receive the data byte

4.2.5.4 Programming the flash

The flash can be written word-by-word or using multiple words (two or four) at a time,
depending on the device used. The target location must be erased before a write
operation. Otherwise, the flash word will corrupt its content. The erase operation can
only be performed for the entire section; hence, it is required to erase the flash
section before starting a write.

The low bytes must be written to the temporary buffer first, and then writing the high
bytes will trigger the flash write operation.

During a multiple-word write, the low bytes and high bytes of all the words should be
written in correct order to start the flash write operation.

The sequence to write flash words is as follows:

• Send the corresponding memory write command
• Send a SST_POSTINC instruction
• Send the low byte of the data to be written
• Send a SST_POSTINC instruction
• Send the high byte of the data to be written
• If the device supports programming more than one word at a time, send one idle

character, and repeat the write sequence above for the required number of words
(two or four) to be written

• Wait for the NVMBUSY bit to be cleared
While programming the configuration section on devices that support programming
multiple words, dummy bytes have to be written to the configuration section after
writing the actual data.

4.2.5.5 Chip erase

The chip erase command will erase the entire code section of the flash memory and
the NVM lock bits. The NVM lock bits are not reset before the code section has been
completely erased. Please note that the configuration, signature, and calibration
sections are not affected by a chip erase. The sequence for performing a chip erase
is as follows:

• Send a CHIP_ERASE command
• Set the address to a location inside code
• Write a dummy byte to the high byte of the location addressed
• Wait for the NVMBUSY bit to be cleared

10 AVR918
8373A-AVR-02/11

4.2.5.6 Erase section

The section erase command will erase the selected NVM section. Code section, NVM
lock bits, and configuration sections can be erased. The calibration section is read
only, hence erase or write operations cannot be performed on it.

• Send a SECTION_ERASE command
• Set the address to a location inside selected section
• Write a dummy byte to the high byte of the location addressed
• Wait for the NVMBUSY bit to be cleared

 AVR918

 11
8373A-AVR-02/11

5 User interface implementation
The Atmel TPI programmer described in this application note supports the Atmel AVR
open source programmer (AVROSP). AVROSP is an Atmel AVR programmer
application equivalent to the Atmel AVRProg tool included with Atmel AVR Studio®. It
is a command-line tool, using the same syntax as the other command-line tools in
AVR Studio. For more information on how the user interface works, please refer to
the Atmel AVR911 application note; AVR911: AVR Open Source Programmer.

The only requirement is to have the avrosp.exe file available. The communication port
settings (baud rate, parity, etc.) must be set manually before using the AVROSP. For
example, to set COM1 for 115200bps, no parity, and eight data bits, run the following
DOS command:

mode com1 baud=115200 parity=n data=8

The supported AVROSP commands are as described in Table 5-1.

Table 5-1. Supported AVROSP commands and actions.
AVROSP
command Action Return

‘T’ Do a dummy read for the AVROSP support ‘\r’

‘P’ Enable TPI ‘\r’

‘L’ Disable TPI ‘\r’

‘a’ Auto increment supported ‘\r’

‘A’ Get NVM word address ‘\r’

‘c’ Get low byte of data to be written ‘\r’

‘C’ Get high byte of data to be written, and start the
NVM write

‘\r’

‘m’ Finished writing one page, for AVR911 support ‘\r’

‘R’ Read one word from the NVM, and return data to
the AVROSP

Data high byte and data
low byte

‘e’ Do chip erase ‘\r’

‘.’ Read four bytes of universal command ‘\r’

‘N’ Read high fuse byte, do a dummy write support for
the AVROSP

Dummy byte (0xFF)

‘S’ Programmer identification Send “AVR ISP”

‘s’ Read device ID Return three bytes of
device ID, high byte first

5.1 Universal command
The universal command sent by the AVROSP starts with a period (.), followed by four
bytes of command. See the details in Table 5-2.

Table 5-2. Supported four-byte commands and actions.
Four byte command Action

0x38 0x00 0xXX 0X00 Read OSCCAL

0xac 0xe0 0x00 data Write lock byte

0x58 0x00 0x00 0x00 Read lock byte

http://www.atmel.com/dyn/resources/prod_documents/doc2568.pdf�

12 AVR918
8373A-AVR-02/11

Four byte command Action

0xac 0xa0 0x00 data Write fuse low

0xac 0xa8 0x00 data Write fuse high

0x50 0x00 0x00 0x00 Read fuse low

0x58 0x08 0x00 0x00 Read fuse high

5.2 Example: Command line syntax for the Atmel ATtiny10
Table 5-3. Command line syntax example for ATtiny10.

Operation Command line syntax

Read signature avrosp.exe -dattiny10 -s

Read fuse byte avrosp.exe -dattiny10 -q

Read lock byte avrosp.exe -dattiny10 -y

Write fuse byte avrosp.exe -dattiny10 –f<fuse bytes>

Write lock byte avrosp.exe -dattiny10 –l<lockbyte>

Chip erase avrosp.exe -dattiny10 -e

Read OSCCAL avrosp.exe -dattiny10 –O

Read flash to <filename.hex> avrosp.exe -dattiny10 -rf –of<filename.hex>

Program flash from <filename.hex> avrosp.exe -dattiny10 -g -e -pf –if<filename.hex>

 AVR918

 13
8373A-AVR-02/11

6 Quick start guide
The following is intended as a step-by-step guide on how to get started:

• Follow the hardware settings as described in Chapter 4, External programmer
implementation, on page 6

• Download and unzip the source code for the Atmel AVR918
• Open \avr918_TPI_programming\trunk\Source\avr918\AVR918.APS
• ADD project configuration --> custom options --> custom compilation options --

>[All Files]--> -DATTINY10 *
• Save all, clean, rebuild
• Program the Atmel ATmega324P
• Run command prompt, go to the avr918 directory
• Type any of the command line syntaxes mentioned in Section 5.2, Example:

Command line syntax for the Atmel ATtiny10, on page 12

14 AVR918
8373A-AVR-02/11

7 Table of contents
Features... 1
1 Introduction .. 1
2 Nonvolatile memories.. 2

2.1 Nonvolatile memory lock bits... 2
2.2 Flash memory.. 2

2.2.1 Code (program memory) section... 2
2.2.2 Configuration section... 2
2.2.3 Signature section... 3
2.2.4 Calibration section... 3

3 TPI target implementation... 4
3.1 TPI frame... 4
3.2 TPI physical layer .. 4

3.2.1 Serial data reception.. 4
3.2.2 Serial data transmission .. 4
3.2.3 Direction change ... 5

3.3 TPI access layer.. 5
4 External programmer implementation ... 6

4.1 Device selection .. 6
4.2 Target interface ... 6

4.2.1 TPI enabling .. 6
4.2.2 TPI instruction set.. 7
4.2.3 Entering external programming mode ... 7
4.2.4 Exiting external programming mode.. 8
4.2.5 Accessing the NVM ... 8

5 User interface implementation.. 11
5.1 Universal command... 11
5.2 Example: Command line syntax for the Atmel ATtiny10................................... 12

6 Quick start guide.. 13
7 Table of contents ... 14

8373A-AVR-02/11

 Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

 Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Milennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

 Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

 Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chou-ku, Tokyo 104-0033
JAPAN
Tel: (+81) 3523-3551
Fax: (+81) 3523-7581

 © 2011 Atmel Corporation. All rights reserved. / Rev.: CORP072610

Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo, AVR Studio®, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

	1 Introduction
	2 Nonvolatile memories
	2.1 Nonvolatile memory lock bits
	2.2 Flash memory

	3 TPI target implementation
	3.1 TPI frame
	3.2 TPI physical layer
	3.3 TPI access layer

	4 External programmer implementation
	4.1 Device selection
	4.2 Target interface

	5 User interface implementation
	5.1 Universal command
	5.2 Example: Command line syntax for the Atmel ATtiny10

	6 Quick start guide
	7 Table of contents

