M. AMAGAI, "Mechanical reliability in electronic packaging", Microelectronics Reliability , Volume 42, Issues 4-5, April-May 2002, pp. 607-627.
Copyright - [Précédente] [Première page] [Suivante] - Home

Article : [ART230]

Titre : M. AMAGAI, Mechanical reliability in electronic packaging, Microelectronics Reliability , Volume 42, Issues 4-5, April-May 2002, pp. 607-627.

Cité dans :[REVUE296] Elsevier Science, Microelectronics Reliability, Volume 42, Issues 4-5, Pages 463-804, April - May 2002.
Auteur : Masazumi Amagai

Vers : Bibliographie
Adresse : SC Package Development Hiji, Texas Instruments, 4260 Kawasaki, Hiji-Machi, Hayami-Gun, Oita-Pref 879-1595, Japan
Tel. : +81-977-73-1729
Fax. : +81-977-73-1582
Lien : mailto:amai@ti.com
Source : Microelectronics Reliability
Volume : 42
Issues : 4-5
Date : April-May 2002
Pages : 607 - 627
DOI : 10.1016/S0026-2714(02)00037-9
PII : S0026-2714(02)00037-9
Lien : private/AMAGAI1.pdf - 1312 Ko, 21 pages
Switches : IGBT
Stockage : Thierry LEQUEU

Abstract :
The dramatic increase in the number of devices and functionality of the latest
ultra large scale integration designs have resulted in increasing chip size.
Concurrently, to achieve higher circuit board component densities, package
dimensions have been shrinking. These two competing trends are leading to ever
more rigorous requirements on the mechanical characteristics of the packaging
technology. The dominant issue in component level reliability is delamination
and cracks initiated at the interface between dissimilar materials. In board
level reliability, solder joint reliability is a primary issue. This paper
describes the methodology of prediction and the explanation for interfacial
delamination, cracks at the top of the interfaces and the edge of corner, and
also solder joint reliability. This paper furthermore presents the role of the
chip backside contamination affecting interfacial delamination, the surface
characterizations and an explanation of the interface chemistry, and the
strength of solders with a variety of plating materials for Sn-Ag-based lead
free solders.

Article Outline
1. Introduction
2. Interfacial cracks between dissimilar materials
3. Cracks at the edge of interface between dissimilar materials
4. Solder joint reliability
5. Wafer backside contamination-induced package interfacial delamination
6. Effect of polyimide surface chemistry and morphology on interfacial strength
7. Effect of solder intermetallic compound on solder joint strength
8. Conclusion


Bibliographie

TOP

References : 63
[1] : Yuuki R. Mechanics of interface. Baifukan: Tokyo, Japan, 1993.
[2] : F. Erdogan , Stress distribution in a nonhomogenous elastic plane with cracks. J Appl Mech 30 (1963), pp. 232-236.
[3] : F. Erdogan , Stress distribution in bonded dissimilar materials with cracks. J Appl Mech 32 (1965), pp. 403-410.
[4] : Kishimoto K et al. Fracture mechanics of interface. In: Japan Society of Material Science (JSMS) Conference, 1999.
[5] : M. Amagai and Y. Umeda , Mechanical characteristics of die attach materials in ball grid array packages. J IMAPS Microcircuit Electron Packag 20 4, Fourth Quarter (1997), pp. 482-493.
[6] : M. Amagai , Investigation of stress singularity fields and stress intensity factors for cracks. J Appl Finite Element Comp Aided Engng 30 1-2 (1998), pp. 97-124.
[7] : Amagai M. Stress singularity fields. In: Proceedings of the 34th International Reliability Physics Symposium, Dallas, USA, May 1996. p. 246-57.
[8] : Amagai M. Investigation of stress singularity fields for interfacial delamination. In: Proceedings of the IEEE 46th Electronic Components and Technology Conference, Orlando, USA, May 1996. p. 414-29.
[9] : Amagai M. Interfacial delamination in ball grid array packages. In: Proceedings of the 19th International Electronic Packaging Symposium, Austin, USA, September 1996. p. 257-70.
[10] : Amagai M. Interface cracks in electronics packaging. In: Proceedings of the IMAPS International Microelectronics Conference, Omiya, Japan, 1996. p. 80-5.
[11] : Amagai M. Polyimide fatigue induced chip surface damage in DRAM's lead-on-chip LOC Packages. In: Proceedings of 33rd IEEE International Reliability Physics Symposium, April 1995. p. 97-6.
[12] : R.S. Barsoum , On the use of isoparametric finite elements in linear fracture mechanics. Int J Numer Meth Eng 9 (1975), pp. 495-509.
[13] : Yuuki R, Sato M. Mechanics of the interface in LSI package. In: Proceedings of Japan Soc of Mech Eng International Symposium on Highly Advanced Computing, August 1994. p. 107-22.
[14] : Shiratori M, Yu O. A benchmark test of computational mechanics in electronic device and components. In: Proceedings of Japan Society of Mechanical Engineering, International Symposium on Highly Advanced Computing, August 1994. p. 177-95.
[15] : D.B. Bogy , Two edge bonded elastic wedges of different materials and wedge angles and surface tractions. J Appl Mech 11 (1971), pp. 377-386.
[16] : G.R. Irwin , Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24 (1957), pp. 361-364.
[17] : Narisawa I. Plastic fracture toughness. Sigma; 1993. p. 1-204.
[18] : Xu JQ, Yuuki R. Stress intensity factors for interface crack between dissimilar orthotropic materials. Jpn Soc Mech Eng 1994;60:41-8.
[19] : A. Dasgupta , Failure mechanism models for cyclic fatigue. IEEE Trans Reliab 42 4 (1993), pp. 548-555.
[20] : Oishi F. Plastic fatigue. Nikankoguo; 1986. p. 140.
[21] : M. Shiratori , Problems of joint in packaging of electronics devices. Jpn Soc Mech Eng 60 (1994), pp. 3-10.
[22] : Miyoshi. Mechanics of interface. Report of Tokyo University, January 1992.
[23] : Amagai M. The effect of stress intensity factors on package cracking. In: Proceedings of IEEE Japan International Electronics Manufacturing Technology Symposium, December 1995. p. 415-20.
[24] : Amagai M. Investigation of stress singularity fields and stress intensity factors for cracks. In: Proceedings of 34th IEEE International Reliability Physics Symposium, April 1996. p. 246-57.
[25] : Amagai M. Investigation of stress singularity fields and stress intensity factors for interfacial delamination. In: Proceedings of 46th IEEE Electronic Components Technology Conference, May 1996. p. 414-29.
[26] : Amagai M. Investigation of stress singularity fields and stress intensity factors for package cracking. In: Proceedings of 9th International Microelectronics Conference, Japan, April 1996. p. 80-5.
[27] : Lau JH, Pao Y-H. Solder joint reliability of BGA, CSP, flip chip, and fine pitch SMT assemblies. McGraw-Hill; 1997. p. 1-405.
[28] : Amagai M. The effect of polymer die attach material on solder joint reliability. In: Proceedings of the ASME Workshop on Mechanical Reliability of Polymeric Materials of IC Devices, Paris, France, November 1998. p. 223-30.
[29] : Amagai M. Chip scale package solder joint reliability. In: Proceedings of the IEEE 36th International Reliability Physics Symposium, Reno, USA, April 1998. p. 260-68.
[30] : R. Darveaux , Solder joint fatigue life model. In: Design and Reliability of Solders and Solder Interconnections, The Minerals, Metals and Materials Society (TMS) (1997), pp. 213-218.
[31] : M. Amagai , Chip scale package (CSP) solder joint reliability and modeling. Microelectron Reliab 39 (1999), pp. 463-477.
[32] : M. Amagai , Chip scale package (CSP) material characterization. Microelectron Reliab 42 (1999), pp. 573-587.
[33] : Amagai M. Characterization of molding compound and die attach materials for package warpage and solder joint reliability in chip scale package. In: Proceedings of the ASME InterPack, Hawaii, USA, June 1999. p.1103-12.
[34] : M. Amagai , The effect of solder pad metallization on solder fatigue and crack growth. J Jpn Inst Electron Packag JIEP 4 1 (2001), pp. 30-36.
[35] : M. Mukai, T. Kawakami, K. Takahashi, K. Kishimoto and T. Shibuya , Thermal fatigue life of solder bumps in BGA. JSME Int J Series A-Solid Mech & Mater Eng 41 (1998), pp. 260-266.
[36] : Q. Yu and M. Shiratori , Thermal fatigue reliability assessment for solder joints of BGA assembly. ASME EEP-vol. 26-1. Adv Electron Packag 1 (1999), pp. 239-246.
[37] : Kishimoto K, Masuda K, Omiya M, Shibuya T. Effect of intermetallic compound layer development on mechanical strength of 63Sn-37Pb solder joints. In: Michel B et al., editors. Proceedings of 3rd International Conference and Poster Exhibition, Micro Materials, MICROMAT 2000, Berlin, Germany, 2000. p. 560-65.
[38] : M. Omiya , Kishimoto K, Shibuya T, Amagai M. Effect of intermetallic compound layer development on interfacial strength of solder joints. ASME EEP-vol. Adv Electron Packag 1 (2001).
[39] : J. Wilde, K. Becker, M. Thoben, W. Blum, T. Jupitz, G. Wang et al., Rate dependent constitutive relations based on Anand model for 92.5Pb5Sn2.5Ag solder. IEEE Trans Component Packag Manufact Technol Part B 23 (2000), pp. 408-414.
[40] : J.J. Jonas, C.M. Sellars and W.J. Mcg Tegart , Strength and structure under hot working conditions. Metall Rev 14 (1969), p. 1.
[41] : L. Anand , Constitutive equations for the rate-dependent deformation of metals at elevated temperatures. Trans ASME, J Eng Mater Technol 104 1 (1992), pp. 12-17.
[42] : Amagai M. The effect of polymer die attach material on solder joint reliability. In: Proceedings of the ASME Workshop on Mechanical Reliability of Polymeric Materials of IC Devices, Paris, France, November 1998. p. 223-30.
[43] : Amagai M. Chip scale package solder joint reliability. In: Proceedings of the IEEE 36th International Reliability Physics Symposium, Reno, USA, April 1998. p. 260-68.
[44] : R. Darveaux , Solder joint fatigue life model. In: Design and Reliability of Solders and Solder Interconnections, The Minerals, Metals and Materials Society (TMS) (1997), pp. 213-218.
[45] : M. Amagai , Chip scale package CSP solder joint reliability and modeling. Microelectron Reliab 39 (1999), pp. 463-477. Reliab 42 (1999), pp. 573-587.
[47] : Amagai M. Characterization of molding compound and die attach materials for package warpage and solder joint reliability in chip scale package. In: Proceedings of the ASME InterPack, Hawaii, USA, June 1999. p. 1103-12.
[48] : M. Amagai , Chip scale package solder joint reliability and material characterization. J Jpn Inst Electron Packag (JIEP) 3 1 (2000), pp. 45-56.
[49] : Amagai M. Cracking failures in lead-on-chip packages induced by chip backside contamination. In: Proceedings of IEEE Electronic Components and Technology Conference, 1994. p. 171-76.
[50] : M. Amagai and K. Ebe , Cracking failure in lead-on-chip packages induced by chip backside contamination. Int J IEEE Trans Component Packag Manufact Technol (CPMT) Part B: Adv Packag 18 1 (1995), pp. 119-126. Abstract-Compendex |
[51] : Amagai M. Interface cracks in electronics packaging. In: Proceedings of the IMAPS International Microelectronics Conference, Omiya, Japan, 1996. p. 80-5.
[52] : M. Amagai , Effect of adhesive surface chemistry and morphology on package cracking. IEEE Trans CPMT Part B: Adv Packag 19 2 (1996), pp. 301-309.
[53] : M. Amagai , Cracking failure in lead-on-chip packages. IEEE Trans CPMT Part B: Adv Packag 18 1 (1995), pp. 119-126.
[54] : Amagai M. The effect of polyimide surface and morphology on delamination in lead-on-chip packages. In: Proceedings of the IEEE 45th Electronic Components and Technology Conference, Las Vegas, USA, 1995. p. 919-27.
[55] : Amagai M. The effect of polyimide surface chemistry and morphology on package cracking induced by interfacial delamination. In: Proceeding of the IEEE 32nd International Reliability Physics Symposium, San Jose, USA, April 1994. p. 101-7.
[56] : Grunze M. Chemistry of adhesion at the polyimide-metal interface. Mat Res Soc Symp Proc 1992;264:189-99.
[57] : M. Amagai , The effect of solder pad metallization on solder fatigue and crack growth. J Jpn Inst Electron Packag (JIEP) 4 1 (2001), pp. 30-36.
[58] : M. Mukai, T. Kawakami, K. Takahashi, K. Kishimoto and T. Shibuya , Thermal fatigue life of solder bumps in BGA. JSME Int J Series A-Solid Mech & Mater Eng 41 (1998), pp. 260-266.
[59] : Q. Yu and M. Shiratori , Thermal fatigue reliability assessment for solder joints of BGA assembly. ASME EEP, vol. 26-1. Adv Electron Packag 1 (1999), pp. 239-246.
[60] : Kishimoto K, Masuda K, Omiya M, Shibuya T. Effect of intermetallic compound layer development on mechanical strength of 63Sn-37Pb solder joints. In: Michel B et al., editors. Proceedings of 3rd International Conference and Poster Exhibition, Micro Materials, MICROMAT2000, Berlin, Germany, 2000. p. 560-65.
[61] : M. Omiya, K. Kishimoto, T. Shibuya and M. Amagai , Effect of intermetallic compound layer development on interfacial strength of solder joints. ASME EEP-vol. Adv Electron Packag 1 (2001), p. 11.
[62] : W.K. Choi and H.M. Lee , Effect of soldering and aging time on interfacial microstructure and growth of intermetallic compounds between Sn-3.5Ag solder alloy and Cu substrate. J Electron Mater 29 (2000), pp. 1207-1213.
[63] : C.E. Ho, Y.M. Chen and C.R. Kao , Reaction kinetics of solder-balls with pads in BGA packages during reflow soldering. J Electron Mater 28 (1999), pp. 1231-1237.


Mise à jour le lundi 10 avril 2023 à 18 h 46 - E-mail : thierry.lequeu@gmail.com
Cette page a été produite par le programme TXT2HTM.EXE, version 10.7.3 du 27 décembre 2018.

Copyright 2023 : TOP

Les informations contenues dans cette page sont à usage strict de Thierry LEQUEU et ne doivent être utilisées ou copiées par un tiers.
Powered by www.google.fr, www.e-kart.fr, l'atelier d'Aurélie - Coiffure mixte et barbier, La Boutique Kit Elec Shop and www.lequeu.fr.